|
|
|
|
|
import os |
|
import argparse |
|
|
|
import torch |
|
from PIL import Image |
|
|
|
from llava.conversation import conv_templates |
|
from llava.mm_utils import tokenizer_image_token, process_images |
|
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN |
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, CLIPImageProcessor |
|
|
|
def predict(args): |
|
model_id = args.model_path.split("/")[-1] |
|
print(f"{model_id=}") |
|
|
|
|
|
|
|
model_path = os.path.expanduser(args.model_path) |
|
generation_config = None |
|
if os.path.exists(os.path.join(model_path, 'generation_config.json')): |
|
generation_config = os.path.join(model_path, '.generation_config.json') |
|
os.rename(os.path.join(model_path, 'generation_config.json'), |
|
generation_config) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(f"riddhimanrana/{model_id}") |
|
model = AutoModelForCausalLM.from_pretrained(f"riddhimanrana/{model_id}", torch_dtype=torch.float16, device_map="cuda") |
|
image_processor = CLIPImageProcessor.from_pretrained(f"riddhimanrana/{model_id}") |
|
|
|
|
|
qs = args.prompt |
|
if model.config.mm_use_im_start_end: |
|
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs |
|
else: |
|
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs |
|
conv = conv_templates[args.conv_mode].copy() |
|
conv.append_message(conv.roles[0], qs) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
|
|
|
|
model.generation_config.pad_token_id = tokenizer.pad_token_id |
|
|
|
|
|
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(torch.device("cuda")) |
|
|
|
|
|
image = Image.open(args.image_file).convert('RGB') |
|
image_tensor = process_images([image], image_processor, model.config)[0] |
|
|
|
|
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids, |
|
images=image_tensor.unsqueeze(0).half(), |
|
image_sizes=[image.size], |
|
do_sample=True if args.temperature > 0 else False, |
|
temperature=args.temperature, |
|
top_p=args.top_p, |
|
num_beams=args.num_beams, |
|
max_new_tokens=256, |
|
use_cache=True) |
|
|
|
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() |
|
print(outputs) |
|
|
|
|
|
if generation_config is not None: |
|
os.rename(generation_config, os.path.join(model_path, 'generation_config.json')) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model-path", type=str, default="./llava-v1.5-0.5b") |
|
parser.add_argument("--model-base", type=str, default=None) |
|
parser.add_argument("--image-file", type=str, default=None, help="location of image file") |
|
parser.add_argument("--prompt", type=str, default="Describe the image.", help="Prompt for VLM.") |
|
parser.add_argument("--conv-mode", type=str, default="qwen_2") |
|
parser.add_argument("--temperature", type=float, default=0.0) |
|
parser.add_argument("--top_p", type=float, default=None) |
|
parser.add_argument("--num_beams", type=int, default=1) |
|
args = parser.parse_args() |
|
|
|
predict(args) |
|
|