Create predict.py
Browse files- predict.py +86 -0
predict.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Credit for this script goes to @ariG23498 who opened a PR on the apple/ml-fastvlm repo to add this model to hugging face transformers. The apple team still needs to convert the weights in order for it to be officially available.
|
2 |
+
|
3 |
+
import os
|
4 |
+
import argparse
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
from llava.conversation import conv_templates
|
10 |
+
from llava.mm_utils import tokenizer_image_token, process_images
|
11 |
+
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
12 |
+
|
13 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, CLIPImageProcessor
|
14 |
+
|
15 |
+
def predict(args):
|
16 |
+
model_id = args.model_path.split("/")[-1]
|
17 |
+
print(f"{model_id=}")
|
18 |
+
|
19 |
+
# Remove generation config from model folder
|
20 |
+
# to read generation parameters from args
|
21 |
+
model_path = os.path.expanduser(args.model_path)
|
22 |
+
generation_config = None
|
23 |
+
if os.path.exists(os.path.join(model_path, 'generation_config.json')):
|
24 |
+
generation_config = os.path.join(model_path, '.generation_config.json')
|
25 |
+
os.rename(os.path.join(model_path, 'generation_config.json'),
|
26 |
+
generation_config)
|
27 |
+
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(f"riddhimanrana/{model_id}")
|
29 |
+
model = AutoModelForCausalLM.from_pretrained(f"riddhimanrana/{model_id}", torch_dtype=torch.float16, device_map="cuda")
|
30 |
+
image_processor = CLIPImageProcessor.from_pretrained(f"riddhimanrana/{model_id}")
|
31 |
+
|
32 |
+
# Construct prompt
|
33 |
+
qs = args.prompt
|
34 |
+
if model.config.mm_use_im_start_end:
|
35 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
|
36 |
+
else:
|
37 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
38 |
+
conv = conv_templates[args.conv_mode].copy()
|
39 |
+
conv.append_message(conv.roles[0], qs)
|
40 |
+
conv.append_message(conv.roles[1], None)
|
41 |
+
prompt = conv.get_prompt()
|
42 |
+
|
43 |
+
# Set the pad token id for generation
|
44 |
+
model.generation_config.pad_token_id = tokenizer.pad_token_id
|
45 |
+
|
46 |
+
# Tokenize prompt
|
47 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(torch.device("cuda"))
|
48 |
+
|
49 |
+
# Load and preprocess image
|
50 |
+
image = Image.open(args.image_file).convert('RGB')
|
51 |
+
image_tensor = process_images([image], image_processor, model.config)[0]
|
52 |
+
|
53 |
+
# Run inference
|
54 |
+
with torch.inference_mode():
|
55 |
+
output_ids = model.generate(
|
56 |
+
input_ids,
|
57 |
+
images=image_tensor.unsqueeze(0).half(),
|
58 |
+
image_sizes=[image.size],
|
59 |
+
do_sample=True if args.temperature > 0 else False,
|
60 |
+
temperature=args.temperature,
|
61 |
+
top_p=args.top_p,
|
62 |
+
num_beams=args.num_beams,
|
63 |
+
max_new_tokens=256,
|
64 |
+
use_cache=True)
|
65 |
+
|
66 |
+
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
67 |
+
print(outputs)
|
68 |
+
|
69 |
+
# Restore generation config
|
70 |
+
if generation_config is not None:
|
71 |
+
os.rename(generation_config, os.path.join(model_path, 'generation_config.json'))
|
72 |
+
|
73 |
+
|
74 |
+
if __name__ == "__main__":
|
75 |
+
parser = argparse.ArgumentParser()
|
76 |
+
parser.add_argument("--model-path", type=str, default="./llava-v1.5-0.5b")
|
77 |
+
parser.add_argument("--model-base", type=str, default=None)
|
78 |
+
parser.add_argument("--image-file", type=str, default=None, help="location of image file")
|
79 |
+
parser.add_argument("--prompt", type=str, default="Describe the image.", help="Prompt for VLM.")
|
80 |
+
parser.add_argument("--conv-mode", type=str, default="qwen_2")
|
81 |
+
parser.add_argument("--temperature", type=float, default=0.0)
|
82 |
+
parser.add_argument("--top_p", type=float, default=None)
|
83 |
+
parser.add_argument("--num_beams", type=int, default=1)
|
84 |
+
args = parser.parse_args()
|
85 |
+
|
86 |
+
predict(args)
|