SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("richie-ghost/sentence-transformers-all-mpnet-base-v2")
# Run inference
sentences = [
'A man in black shirt sits on a stool while trying to sell stuffed animals.',
'A man is sitting on a stool.',
'A young lady is sitting on a bench at the bus stop.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
eval - Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.0005 |
| cosine_accuracy@3 | 0.3696 |
| cosine_accuracy@5 | 0.4739 |
| cosine_accuracy@10 | 0.5881 |
| cosine_precision@1 | 0.0005 |
| cosine_precision@3 | 0.1232 |
| cosine_precision@5 | 0.0948 |
| cosine_precision@10 | 0.0588 |
| cosine_recall@1 | 0.0005 |
| cosine_recall@3 | 0.3696 |
| cosine_recall@5 | 0.4739 |
| cosine_recall@10 | 0.5881 |
| cosine_ndcg@10 | 0.3038 |
| cosine_mrr@10 | 0.212 |
| cosine_map@100 | 0.2256 |
| dot_accuracy@1 | 0.0006 |
| dot_accuracy@3 | 0.3697 |
| dot_accuracy@5 | 0.4739 |
| dot_accuracy@10 | 0.5881 |
| dot_precision@1 | 0.0006 |
| dot_precision@3 | 0.1232 |
| dot_precision@5 | 0.0948 |
| dot_precision@10 | 0.0588 |
| dot_recall@1 | 0.0006 |
| dot_recall@3 | 0.3697 |
| dot_recall@5 | 0.4739 |
| dot_recall@10 | 0.5881 |
| dot_ndcg@10 | 0.3038 |
| dot_mrr@10 | 0.212 |
| dot_map@100 | 0.2256 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 48,393 training samples
- Columns:
sentence_0andsentence_1 - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 6 tokens
- mean: 18.73 tokens
- max: 124 tokens
- min: 4 tokens
- mean: 11.35 tokens
- max: 62 tokens
- Samples:
sentence_0 sentence_1 A group of kids in red and white playing soccer.There are kids playing ball in a soccer tournament.I had a great time at the theme park with my family.Did you have fun at the theme park with your family?A black and white elderly gentlemen riding an am-track.A man is on a train. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 4multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 4max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
| Epoch | Step | Training Loss | eval_dot_map@100 |
|---|---|---|---|
| 0.1653 | 500 | 0.0446 | 0.2186 |
| 0.3306 | 1000 | 0.0544 | 0.2226 |
| 0.4959 | 1500 | 0.0419 | 0.2191 |
| 0.6612 | 2000 | 0.0532 | 0.2210 |
| 0.8264 | 2500 | 0.0438 | 0.2209 |
| 0.9917 | 3000 | 0.0422 | 0.2220 |
| 1.0 | 3025 | - | 0.2225 |
| 1.1570 | 3500 | 0.021 | 0.2236 |
| 1.3223 | 4000 | 0.0163 | 0.2243 |
| 1.4876 | 4500 | 0.0158 | 0.2221 |
| 1.6529 | 5000 | 0.0178 | 0.2221 |
| 1.8182 | 5500 | 0.0154 | 0.2222 |
| 1.9835 | 6000 | 0.0145 | 0.2228 |
| 2.0 | 6050 | - | 0.2247 |
| 2.1488 | 6500 | 0.0098 | 0.2250 |
| 2.3140 | 7000 | 0.0076 | 0.2239 |
| 2.4793 | 7500 | 0.0069 | 0.2253 |
| 2.6446 | 8000 | 0.0073 | 0.2245 |
| 2.8099 | 8500 | 0.0063 | 0.2245 |
| 2.9752 | 9000 | 0.0074 | 0.2251 |
| 3.0 | 9075 | - | 0.2251 |
| 3.1405 | 9500 | 0.0044 | 0.2256 |
| 3.3058 | 10000 | 0.0043 | 0.2259 |
| 3.4711 | 10500 | 0.0038 | 0.2261 |
| 3.6364 | 11000 | 0.0039 | 0.2256 |
| 3.8017 | 11500 | 0.0037 | 0.2251 |
| 3.9669 | 12000 | 0.0043 | 0.2256 |
| 4.0 | 12100 | - | 0.2256 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 1.0.1
- Datasets: 3.0.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
Model tree for richie-ghost/sentence-transformers-all-mpnet-base-v2
Base model
sentence-transformers/all-mpnet-base-v2Evaluation results
- Cosine Accuracy@1 on evalself-reported0.000
- Cosine Accuracy@3 on evalself-reported0.370
- Cosine Accuracy@5 on evalself-reported0.474
- Cosine Accuracy@10 on evalself-reported0.588
- Cosine Precision@1 on evalself-reported0.000
- Cosine Precision@3 on evalself-reported0.123
- Cosine Precision@5 on evalself-reported0.095
- Cosine Precision@10 on evalself-reported0.059
- Cosine Recall@1 on evalself-reported0.000
- Cosine Recall@3 on evalself-reported0.370