SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("richie-ghost/sentence-transformers-all-mpnet-base-v2")
# Run inference
sentences = [
'A man in black shirt sits on a stool while trying to sell stuffed animals.',
'A man is sitting on a stool.',
'A young lady is sitting on a bench at the bus stop.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
eval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0005 |
cosine_accuracy@3 | 0.3696 |
cosine_accuracy@5 | 0.4739 |
cosine_accuracy@10 | 0.5881 |
cosine_precision@1 | 0.0005 |
cosine_precision@3 | 0.1232 |
cosine_precision@5 | 0.0948 |
cosine_precision@10 | 0.0588 |
cosine_recall@1 | 0.0005 |
cosine_recall@3 | 0.3696 |
cosine_recall@5 | 0.4739 |
cosine_recall@10 | 0.5881 |
cosine_ndcg@10 | 0.3038 |
cosine_mrr@10 | 0.212 |
cosine_map@100 | 0.2256 |
dot_accuracy@1 | 0.0006 |
dot_accuracy@3 | 0.3697 |
dot_accuracy@5 | 0.4739 |
dot_accuracy@10 | 0.5881 |
dot_precision@1 | 0.0006 |
dot_precision@3 | 0.1232 |
dot_precision@5 | 0.0948 |
dot_precision@10 | 0.0588 |
dot_recall@1 | 0.0006 |
dot_recall@3 | 0.3697 |
dot_recall@5 | 0.4739 |
dot_recall@10 | 0.5881 |
dot_ndcg@10 | 0.3038 |
dot_mrr@10 | 0.212 |
dot_map@100 | 0.2256 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 48,393 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 6 tokens
- mean: 18.73 tokens
- max: 124 tokens
- min: 4 tokens
- mean: 11.35 tokens
- max: 62 tokens
- Samples:
sentence_0 sentence_1 A group of kids in red and white playing soccer.
There are kids playing ball in a soccer tournament.
I had a great time at the theme park with my family.
Did you have fun at the theme park with your family?
A black and white elderly gentlemen riding an am-track.
A man is on a train.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | eval_dot_map@100 |
---|---|---|---|
0.1653 | 500 | 0.0446 | 0.2186 |
0.3306 | 1000 | 0.0544 | 0.2226 |
0.4959 | 1500 | 0.0419 | 0.2191 |
0.6612 | 2000 | 0.0532 | 0.2210 |
0.8264 | 2500 | 0.0438 | 0.2209 |
0.9917 | 3000 | 0.0422 | 0.2220 |
1.0 | 3025 | - | 0.2225 |
1.1570 | 3500 | 0.021 | 0.2236 |
1.3223 | 4000 | 0.0163 | 0.2243 |
1.4876 | 4500 | 0.0158 | 0.2221 |
1.6529 | 5000 | 0.0178 | 0.2221 |
1.8182 | 5500 | 0.0154 | 0.2222 |
1.9835 | 6000 | 0.0145 | 0.2228 |
2.0 | 6050 | - | 0.2247 |
2.1488 | 6500 | 0.0098 | 0.2250 |
2.3140 | 7000 | 0.0076 | 0.2239 |
2.4793 | 7500 | 0.0069 | 0.2253 |
2.6446 | 8000 | 0.0073 | 0.2245 |
2.8099 | 8500 | 0.0063 | 0.2245 |
2.9752 | 9000 | 0.0074 | 0.2251 |
3.0 | 9075 | - | 0.2251 |
3.1405 | 9500 | 0.0044 | 0.2256 |
3.3058 | 10000 | 0.0043 | 0.2259 |
3.4711 | 10500 | 0.0038 | 0.2261 |
3.6364 | 11000 | 0.0039 | 0.2256 |
3.8017 | 11500 | 0.0037 | 0.2251 |
3.9669 | 12000 | 0.0043 | 0.2256 |
4.0 | 12100 | - | 0.2256 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 1.0.1
- Datasets: 3.0.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for richie-ghost/sentence-transformers-all-mpnet-base-v2
Base model
sentence-transformers/all-mpnet-base-v2Evaluation results
- Cosine Accuracy@1 on evalself-reported0.000
- Cosine Accuracy@3 on evalself-reported0.370
- Cosine Accuracy@5 on evalself-reported0.474
- Cosine Accuracy@10 on evalself-reported0.588
- Cosine Precision@1 on evalself-reported0.000
- Cosine Precision@3 on evalself-reported0.123
- Cosine Precision@5 on evalself-reported0.095
- Cosine Precision@10 on evalself-reported0.059
- Cosine Recall@1 on evalself-reported0.000
- Cosine Recall@3 on evalself-reported0.370