metadata
license: apache-2.0
base_model: google-t5/t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-t5-small-summarization
results: []
flan-t5-small-summarization
This model is a fine-tuned version of google-t5/t5-small on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.9716
- Rouge1: 14.8237
- Rouge2: 5.3275
- Rougel: 12.6729
- Rougelsum: 13.6266
- Gen Len: 18.968
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
No log | 0.12 | 100 | 2.0773 | 15.1231 | 5.4025 | 12.9496 | 13.9319 | 18.94 |
No log | 0.24 | 200 | 2.0736 | 14.7565 | 5.2799 | 12.6268 | 13.5578 | 18.94 |
No log | 0.36 | 300 | 2.0632 | 14.8383 | 5.2319 | 12.6555 | 13.6597 | 18.968 |
No log | 0.48 | 400 | 2.0629 | 14.8558 | 5.2815 | 12.6581 | 13.6503 | 18.968 |
2.2157 | 0.6 | 500 | 2.0583 | 14.8736 | 5.3228 | 12.649 | 13.6717 | 18.968 |
2.2157 | 0.72 | 600 | 2.0520 | 14.8178 | 5.3112 | 12.586 | 13.6262 | 18.968 |
2.2157 | 0.84 | 700 | 2.0467 | 14.9042 | 5.3468 | 12.6543 | 13.6596 | 18.968 |
2.2157 | 0.96 | 800 | 2.0435 | 14.8682 | 5.3287 | 12.661 | 13.6869 | 18.968 |
2.2157 | 1.08 | 900 | 2.0375 | 14.9469 | 5.362 | 12.7083 | 13.7525 | 18.968 |
2.1846 | 1.2 | 1000 | 2.0324 | 14.8316 | 5.3471 | 12.6593 | 13.6452 | 18.968 |
2.1846 | 1.32 | 1100 | 2.0309 | 14.6717 | 5.2555 | 12.5319 | 13.4962 | 18.968 |
2.1846 | 1.44 | 1200 | 2.0189 | 14.8455 | 5.3386 | 12.6002 | 13.6588 | 18.968 |
2.1846 | 1.56 | 1300 | 2.0182 | 14.9323 | 5.3902 | 12.7187 | 13.7579 | 18.968 |
2.1846 | 1.68 | 1400 | 2.0172 | 14.969 | 5.4698 | 12.8021 | 13.8116 | 18.968 |
2.1596 | 1.8 | 1500 | 2.0105 | 15.0152 | 5.5355 | 12.8098 | 13.8475 | 18.968 |
2.1596 | 1.92 | 1600 | 2.0100 | 15.0009 | 5.3835 | 12.764 | 13.785 | 18.968 |
2.1596 | 2.04 | 1700 | 2.0083 | 14.8145 | 5.2912 | 12.6179 | 13.6279 | 18.968 |
2.1596 | 2.16 | 1800 | 2.0035 | 14.8232 | 5.2131 | 12.6386 | 13.6297 | 18.968 |
2.1596 | 2.28 | 1900 | 2.0006 | 14.8076 | 5.2617 | 12.6578 | 13.6631 | 18.968 |
2.1405 | 2.4 | 2000 | 1.9983 | 14.6508 | 5.0855 | 12.4956 | 13.4989 | 18.968 |
2.1405 | 2.52 | 2100 | 1.9965 | 14.9548 | 5.2857 | 12.6947 | 13.7664 | 18.968 |
2.1405 | 2.64 | 2200 | 1.9917 | 14.8786 | 5.2212 | 12.6813 | 13.6609 | 18.968 |
2.1405 | 2.76 | 2300 | 1.9904 | 15.0902 | 5.4835 | 12.8911 | 13.9191 | 18.968 |
2.1405 | 2.88 | 2400 | 1.9880 | 14.8188 | 5.2057 | 12.6325 | 13.6335 | 18.968 |
2.1287 | 3.0 | 2500 | 1.9844 | 14.7362 | 5.2487 | 12.6559 | 13.64 | 18.968 |
2.1287 | 3.12 | 2600 | 1.9834 | 14.9356 | 5.3404 | 12.7325 | 13.7185 | 18.968 |
2.1287 | 3.24 | 2700 | 1.9839 | 14.9543 | 5.4587 | 12.757 | 13.767 | 18.968 |
2.1287 | 3.36 | 2800 | 1.9821 | 14.8174 | 5.2522 | 12.6935 | 13.6292 | 18.968 |
2.1287 | 3.48 | 2900 | 1.9816 | 14.8201 | 5.2606 | 12.6679 | 13.6275 | 18.968 |
2.1149 | 3.6 | 3000 | 1.9795 | 14.8112 | 5.253 | 12.5789 | 13.5714 | 18.968 |
2.1149 | 3.72 | 3100 | 1.9788 | 14.7946 | 5.3272 | 12.6237 | 13.614 | 18.968 |
2.1149 | 3.84 | 3200 | 1.9761 | 14.8197 | 5.295 | 12.6209 | 13.6327 | 18.968 |
2.1149 | 3.96 | 3300 | 1.9761 | 14.7752 | 5.2759 | 12.6239 | 13.6167 | 18.968 |
2.1149 | 4.08 | 3400 | 1.9714 | 14.7938 | 5.2988 | 12.7085 | 13.6708 | 18.968 |
2.1138 | 4.2 | 3500 | 1.9729 | 14.8006 | 5.2526 | 12.6427 | 13.6018 | 18.968 |
2.1138 | 4.32 | 3600 | 1.9751 | 14.7531 | 5.2913 | 12.6372 | 13.5782 | 18.968 |
2.1138 | 4.44 | 3700 | 1.9743 | 14.7556 | 5.2694 | 12.6372 | 13.5786 | 18.968 |
2.1138 | 4.56 | 3800 | 1.9710 | 14.8124 | 5.2887 | 12.7095 | 13.6666 | 18.968 |
2.1138 | 4.68 | 3900 | 1.9725 | 14.7104 | 5.2357 | 12.5839 | 13.5364 | 18.968 |
2.1033 | 4.8 | 4000 | 1.9726 | 14.7673 | 5.2771 | 12.6343 | 13.5731 | 18.968 |
2.1033 | 4.92 | 4100 | 1.9716 | 14.8237 | 5.3275 | 12.6729 | 13.6266 | 18.968 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2