wavlm-basic_s-f-o_8batch_5sec_0.0001lr_unfrozen

This model is a fine-tuned version of microsoft/wavlm-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3331
  • Accuracy: 0.8
  • F1: 0.8022

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.003
  • num_epochs: 1000

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
2.2668 1.0 131 2.1265 0.2833 0.1955
1.3925 2.0 262 1.3972 0.4833 0.4566
0.9643 2.99 393 1.0938 0.65 0.6166
0.6244 4.0 525 0.9165 0.75 0.7322
0.3692 5.0 656 0.9714 0.7333 0.7207
0.3284 6.0 787 0.5999 0.85 0.8515
0.2096 6.99 918 0.7120 0.8 0.8005
0.1974 8.0 1050 0.6648 0.8667 0.8671
0.1349 9.0 1181 0.7068 0.8333 0.8337
0.221 10.0 1312 1.2068 0.7667 0.7577
0.1403 10.99 1443 0.9815 0.85 0.8480
0.1211 12.0 1575 1.0742 0.7833 0.7890
0.0901 13.0 1706 0.8772 0.8167 0.8150

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
26
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.