|
from transformers import ( |
|
AutoConfig, |
|
BlenderbotSmallForConditionalGeneration, |
|
logging |
|
) |
|
from transformers.modeling_outputs import ( |
|
Seq2SeqLMOutput, |
|
BaseModelOutput, |
|
) |
|
from huggingface_hub import hf_hub_url, cached_download |
|
from onnxruntime import (GraphOptimizationLevel, |
|
InferenceSession, |
|
SessionOptions) |
|
|
|
from torch import from_numpy |
|
from torch.nn import Module |
|
from functools import reduce |
|
from operator import iconcat |
|
|
|
|
|
logging.set_verbosity_error() |
|
|
|
model_vocab_size=30000 |
|
model_card="remzicam/xs_blenderbot_onnx" |
|
model_file_names=["blenderbot_small-90M-encoder-quantized.onnx", |
|
"blenderbot_small-90M-decoder-quantized.onnx", |
|
"blenderbot_small-90M-init-decoder-quantized.onnx"] |
|
|
|
class BlenderEncoder(Module): |
|
def __init__(self, encoder_sess): |
|
super().__init__() |
|
self.encoder = encoder_sess |
|
|
|
def forward( |
|
self, |
|
input_ids, |
|
attention_mask, |
|
inputs_embeds=None, |
|
head_mask=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
|
|
encoder_hidden_state = from_numpy( |
|
self.encoder.run( |
|
None, |
|
{ |
|
"input_ids": input_ids.cpu().numpy(), |
|
"attention_mask": attention_mask.cpu().numpy(), |
|
}, |
|
)[0] |
|
) |
|
|
|
return BaseModelOutput(encoder_hidden_state) |
|
|
|
|
|
class BlenderDecoderInit(Module): |
|
def __init__(self, decoder_sess): |
|
super().__init__() |
|
self.decoder = decoder_sess |
|
|
|
def forward(self, input_ids, encoder_attention_mask, encoder_hidden_states): |
|
|
|
decoder_outputs = self.decoder.run( |
|
None, |
|
{ |
|
"input_ids": input_ids.cpu().numpy(), |
|
"encoder_attention_mask": encoder_attention_mask.cpu().numpy(), |
|
"encoder_hidden_states": encoder_hidden_states.cpu().numpy(), |
|
}, |
|
) |
|
|
|
list_pkv = tuple(from_numpy(x) for x in decoder_outputs[1:]) |
|
|
|
out_past_key_values = tuple( |
|
list_pkv[i : i + 4] for i in range(0, len(list_pkv), 4) |
|
) |
|
|
|
return from_numpy(decoder_outputs[0]), out_past_key_values |
|
|
|
|
|
class BlenderDecoder(Module): |
|
def __init__(self, decoder_sess): |
|
super().__init__() |
|
self.decoder = decoder_sess |
|
|
|
def forward(self, input_ids, attention_mask, encoder_output, past_key_values): |
|
|
|
decoder_inputs = { |
|
"input_ids": input_ids.cpu().numpy(), |
|
"encoder_attention_mask": attention_mask.cpu().numpy(), |
|
} |
|
|
|
flat_past_key_values = reduce(iconcat, past_key_values, []) |
|
|
|
past_key_values = { |
|
f"pkv_{i}": pkv.cpu().numpy() for i, pkv in enumerate(flat_past_key_values) |
|
} |
|
|
|
decoder_outputs = self.decoder.run(None, {**decoder_inputs, **past_key_values}) |
|
|
|
list_pkv = tuple(from_numpy(x) for x in decoder_outputs[1:]) |
|
|
|
|
|
out_past_key_values = tuple( |
|
list_pkv[i : i + 4] for i in range(0, len(list_pkv), 4) |
|
) |
|
|
|
return from_numpy(decoder_outputs[0]), out_past_key_values |
|
|
|
|
|
class OnnxBlender(BlenderbotSmallForConditionalGeneration): |
|
"""creates a Blender model using onnx sessions (encode, decoder & init_decoder)""" |
|
|
|
def __init__(self, onnx_model_sessions): |
|
config = AutoConfig.from_pretrained("facebook/blenderbot_small-90M") |
|
config.vocab_size=model_vocab_size |
|
super().__init__(config) |
|
|
|
assert len(onnx_model_sessions) == 3, "all three models should be given" |
|
|
|
encoder_sess, decoder_sess, decoder_sess_init = onnx_model_sessions |
|
|
|
self.encoder = BlenderEncoder(encoder_sess) |
|
self.decoder = BlenderDecoder(decoder_sess) |
|
self.decoder_init = BlenderDecoderInit(decoder_sess_init) |
|
|
|
def get_encoder(self): |
|
return self.encoder |
|
|
|
def get_decoder(self): |
|
return self.decoder |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
decoder_input_ids=None, |
|
decoder_attention_mask=None, |
|
head_mask=None, |
|
decoder_head_mask=None, |
|
cross_attn_head_mask=None, |
|
encoder_outputs=None, |
|
past_key_values=None, |
|
inputs_embeds=None, |
|
decoder_inputs_embeds=None, |
|
labels=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
|
|
encoder_hidden_states = encoder_outputs[0] |
|
|
|
if past_key_values is not None: |
|
if decoder_input_ids is not None: |
|
decoder_input_ids = decoder_input_ids[:, -1:] |
|
if decoder_inputs_embeds is not None: |
|
decoder_inputs_embeds = decoder_inputs_embeds[:, -1:] |
|
|
|
if past_key_values is None: |
|
|
|
|
|
init_onnx_outputs = self.decoder_init( |
|
decoder_input_ids, attention_mask, encoder_hidden_states |
|
) |
|
|
|
logits, past_key_values = init_onnx_outputs |
|
|
|
else: |
|
|
|
onnx_outputs = self.decoder( |
|
decoder_input_ids, |
|
attention_mask, |
|
encoder_hidden_states, |
|
past_key_values, |
|
) |
|
|
|
logits, past_key_values = onnx_outputs |
|
|
|
return Seq2SeqLMOutput(logits=logits, past_key_values=past_key_values) |
|
|
|
class ModelLoad: |
|
def __init__(self, model_card,file_names): |
|
self.model_card=model_card |
|
self.file_names=file_names |
|
|
|
def model_file_downloader(self,model_card,filename): |
|
config_file_url = hf_hub_url(model_card, filename) |
|
model_file = cached_download(config_file_url) |
|
return model_file |
|
|
|
def inference_session(self,file_name): |
|
model_file=self.model_file_downloader(self.model_card,file_name) |
|
options = SessionOptions() |
|
options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL |
|
return InferenceSession(model_file,options=options) |
|
|
|
def __call__(self,model_config): |
|
model=model_config([*map(self.inference_session, |
|
self.file_names)]) |
|
return model |
|
|
|
model_loader=ModelLoad(model_card,model_file_names) |
|
blender_onnx_model=model_loader(OnnxBlender) |