File size: 6,497 Bytes
de11a1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from transformers import (
    AutoConfig,
    BlenderbotSmallForConditionalGeneration,
    logging
)
from transformers.modeling_outputs import (
    Seq2SeqLMOutput,
    BaseModelOutput,
)
from huggingface_hub import hf_hub_url, cached_download
from onnxruntime import (GraphOptimizationLevel,
                        InferenceSession,
                        SessionOptions)

from torch import from_numpy
from torch.nn import Module
from functools import reduce
from operator import iconcat

#supress huggingface warnings
logging.set_verbosity_error()

model_vocab_size=30000
model_card="remzicam/xs_blenderbot_onnx"
model_file_names=["blenderbot_small-90M-encoder-quantized.onnx",
                "blenderbot_small-90M-decoder-quantized.onnx",
                "blenderbot_small-90M-init-decoder-quantized.onnx"]

class BlenderEncoder(Module):
    def __init__(self, encoder_sess):
        super().__init__()
        self.encoder = encoder_sess

    def forward(
        self,
        input_ids,
        attention_mask,
        inputs_embeds=None,
        head_mask=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):

        encoder_hidden_state = from_numpy(
            self.encoder.run(
                None,
                {
                    "input_ids": input_ids.cpu().numpy(),
                    "attention_mask": attention_mask.cpu().numpy(),
                },
            )[0]
        )

        return BaseModelOutput(encoder_hidden_state)


class BlenderDecoderInit(Module):
    def __init__(self, decoder_sess):
        super().__init__()
        self.decoder = decoder_sess

    def forward(self, input_ids, encoder_attention_mask, encoder_hidden_states):

        decoder_outputs = self.decoder.run(
            None,
            {
                "input_ids": input_ids.cpu().numpy(),
                "encoder_attention_mask": encoder_attention_mask.cpu().numpy(),
                "encoder_hidden_states": encoder_hidden_states.cpu().numpy(),
            },
        )

        list_pkv = tuple(from_numpy(x) for x in decoder_outputs[1:])

        out_past_key_values = tuple(
            list_pkv[i : i + 4] for i in range(0, len(list_pkv), 4)
        )

        return from_numpy(decoder_outputs[0]), out_past_key_values


class BlenderDecoder(Module):
    def __init__(self, decoder_sess):
        super().__init__()
        self.decoder = decoder_sess

    def forward(self, input_ids, attention_mask, encoder_output, past_key_values):

        decoder_inputs = {
            "input_ids": input_ids.cpu().numpy(),
            "encoder_attention_mask": attention_mask.cpu().numpy(),
        }

        flat_past_key_values = reduce(iconcat, past_key_values, [])

        past_key_values = {
            f"pkv_{i}": pkv.cpu().numpy() for i, pkv in enumerate(flat_past_key_values)
        }

        decoder_outputs = self.decoder.run(None, {**decoder_inputs, **past_key_values})
        # converts each value of the list to tensor from numpy
        list_pkv = tuple(from_numpy(x) for x in decoder_outputs[1:])

        # creates a tuple of tuples of shape 6x4 from the above tuple
        out_past_key_values = tuple(
            list_pkv[i : i + 4] for i in range(0, len(list_pkv), 4)
        )

        return from_numpy(decoder_outputs[0]), out_past_key_values


class OnnxBlender(BlenderbotSmallForConditionalGeneration):
    """creates a Blender model using onnx sessions (encode, decoder & init_decoder)"""

    def __init__(self, onnx_model_sessions):
        config = AutoConfig.from_pretrained("facebook/blenderbot_small-90M")
        config.vocab_size=model_vocab_size
        super().__init__(config)

        assert len(onnx_model_sessions) == 3, "all three models should be given"

        encoder_sess, decoder_sess, decoder_sess_init = onnx_model_sessions

        self.encoder = BlenderEncoder(encoder_sess)
        self.decoder = BlenderDecoder(decoder_sess)
        self.decoder_init = BlenderDecoderInit(decoder_sess_init)

    def get_encoder(self):
        return self.encoder

    def get_decoder(self):
        return self.decoder
    
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        decoder_input_ids=None,
        decoder_attention_mask=None,
        head_mask=None,
        decoder_head_mask=None,
        cross_attn_head_mask=None,
        encoder_outputs=None,
        past_key_values=None,
        inputs_embeds=None,
        decoder_inputs_embeds=None,
        labels=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        
        encoder_hidden_states = encoder_outputs[0]
       
        if past_key_values is not None:
            if decoder_input_ids is not None:
                decoder_input_ids = decoder_input_ids[:, -1:]
            if decoder_inputs_embeds is not None:
                decoder_inputs_embeds = decoder_inputs_embeds[:, -1:]

        if past_key_values is None:

            # runs only for the first time:
            init_onnx_outputs = self.decoder_init(
                decoder_input_ids, attention_mask, encoder_hidden_states
            )

            logits, past_key_values = init_onnx_outputs

        else:

            onnx_outputs = self.decoder(
                decoder_input_ids,
                attention_mask,
                encoder_hidden_states,
                past_key_values,
            )

            logits, past_key_values = onnx_outputs

        return Seq2SeqLMOutput(logits=logits, past_key_values=past_key_values)

class ModelLoad:
    def __init__(self, model_card,file_names):
        self.model_card=model_card
        self.file_names=file_names

    def model_file_downloader(self,model_card,filename):
        config_file_url = hf_hub_url(model_card, filename)
        model_file = cached_download(config_file_url)
        return model_file

    def inference_session(self,file_name):
        model_file=self.model_file_downloader(self.model_card,file_name)
        options = SessionOptions()
        options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
        return InferenceSession(model_file,options=options)

    def __call__(self,model_config):
        model=model_config([*map(self.inference_session,
                                self.file_names)])
        return model

model_loader=ModelLoad(model_card,model_file_names)
blender_onnx_model=model_loader(OnnxBlender)