YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

remiai3 β€” Universal AI Project Pack (9 CPU/GPU-Compatible Demos)

Each project runs on CPU-only or GPU with the same dependencies. All use Apache 2.0 / MIT licensed models.

Quick start (any project)

# 1) Create env
python -m venv venv && source .venv/bin/activate  # Windows: ./venv/Scripts/activate

# 2) Install deps
pip install -r requirements.txt

# 3) Run
python main.py --help

Tip: If you have a GPU + CUDA, PyTorch will auto-use it. If not, everything runs on CPU (slower but works).


Projects

  1. Sentiment Analysis β€” distilbert-base-uncased-finetuned-sst-2-english (Apache-2.0)
  2. Named Entity Recognition (NER) β€” dslim/bert-base-NER (Apache-2.0)
  3. Text Summarization β€” sshleifer/distilbart-cnn-12-6 (Apache-2.0)
  4. Keyword Extraction (Embeddings) β€” sentence-transformers/all-MiniLM-L6-v2 (Apache-2.0)
  5. Simple Chatbot β€” microsoft/DialoGPT-small (MIT)
  6. Image Classification β€” torchvision.models.mobilenet_v2 (Apache-2.0)
  7. OCR β€” easyocr (Apache-2.0)
  8. Speech-to-Text β€” openai/whisper-tiny (MIT)
  9. Image Captioning β€” nlpconnect/vit-gpt2-image-captioning (MIT)

Universal requirements

Each folder has its own requirements.txt identical across all projects. If you need CPU-only PyTorch wheels, install the default first (pip install torch) β€” it will fetch the right build automatically. If you already have a CUDA wheel, the scripts will use it.

System notes

  • FFmpeg needed for Whisper STT (brew install ffmpeg, choco install ffmpeg, or use your package manager).
  • TTS downloads models on first run to ~/.local/share/tts (Linux/macOS) or %APPDATA%\tts (Windows).
  • All code defaults to English; you can change languages in the code comments.
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support