FastVLM: Efficient Vision Encoding for Vision Language Models
FastVLM was introduced in FastVLM: Efficient Vision Encoding for Vision Language Models. (CVPR 2025)
Highlights
- We introduce FastViTHD, a novel hybrid vision encoder designed to output fewer tokens and significantly reduce encoding time for high-resolution images.
- Our smallest variant outperforms LLaVA-OneVision-0.5B with 85x faster Time-to-First-Token (TTFT) and 3.4x smaller vision encoder.
- Our larger variants using Qwen2-7B LLM outperform recent works like Cambrian-1-8B while using a single image encoder with a 7.9x faster TTFT.
Evaluations
Benchmark | FastVLM-0.5B | FastVLM-1.5B | FastVLM-7B |
---|---|---|---|
Ai2D | 68.0 | 77.4 | 83.6 |
ScienceQA | 85.2 | 94.4 | 96.7 |
MMMU | 33.9 | 37.8 | 45.4 |
VQAv2 | 76.3 | 79.1 | 80.8 |
ChartQA | 76.0 | 80.1 | 85.0 |
TextVQA | 64.5 | 70.4 | 74.9 |
InfoVQA | 46.4 | 59.7 | 75.8 |
DocVQA | 82.5 | 88.3 | 93.2 |
OCRBench | 63.9 | 70.2 | 73.1 |
RealWorldQA | 56.1 | 61.2 | 67.2 |
SeedBench-Img | 71.0 | 74.2 | 75.4 |
Usage Example
To run inference of PyTorch checkpoint, follow the instruction in the official repo:
Download the model
huggingface-cli download apple/FastVLM-0.5B
Run inference using predict.py
from the official repo.
python predict.py --model-path /path/to/checkpoint-dir \
--image-file /path/to/image.png \
--prompt "Describe the image."
Citation
If you found this model useful, please cite the following paper:
@InProceedings{fastvlm2025,
author = {Pavan Kumar Anasosalu Vasu, Fartash Faghri, Chun-Liang Li, Cem Koc, Nate True, Albert Antony, Gokul Santhanam, James Gabriel, Peter Grasch, Oncel Tuzel, Hadi Pouransari},
title = {FastVLM: Efficient Vision Encoding for Vision Language Models},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2025},
}
- Downloads last month
- 28