whisper-base-zza / README.md
razhan's picture
End of training
b6202d6 verified
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
datasets:
- razhan/DOLMA-speech
metrics:
- wer
model-index:
- name: whisper-base-zza
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: razhan/DOLMA-speech zazaki
type: razhan/DOLMA-speech
args: zazaki
metrics:
- name: Wer
type: wer
value: 1.2574447646493756
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-base-zza
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the razhan/DOLMA-speech zazaki dataset.
It achieves the following results on the evaluation set:
- Loss: 4.0956
- Wer: 1.2574
- Cer: 1.0132
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 192
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 384
- total_eval_batch_size: 256
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| No log | 1.0 | 1 | 4.7831 | 1.2622 | 1.0146 |
| No log | 2.0 | 2 | 4.7831 | 1.2622 | 1.0146 |
| No log | 3.0 | 3 | 4.7831 | 1.2622 | 1.0146 |
| No log | 4.0 | 4 | 4.7831 | 1.2622 | 1.0146 |
| No log | 5.0 | 5 | 4.0956 | 1.2574 | 1.0132 |
### Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0