DOLMA ASR Models
Collection
Models trained on very low-resource Middle Eastern languages
•
9 items
•
Updated
This model is a fine-tuned version of openai/whisper-base on the None dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Mazanderani Wer | Mazanderani Cer | Gilaki Wer | Gilaki Cer | Zazaki Wer | Zazaki Cer | Laki Kurdish Wer | Laki Kurdish Cer | Talysh Wer | Talysh Cer | Hawrami Wer | Hawrami Cer | Southern Kurdish Wer | Southern Kurdish Cer | Avg Wer | Avg Cer |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.5933 | 1.0 | 164 | 0.7337 | 0.8884 | 0.3139 | 0.9969 | 0.3853 | 0.9485 | 0.7335 | 0.7857 | 0.2461 | 0.9167 | 0.5 | 0.5257 | 0.1162 | 0.6900 | 0.2137 | 0.8217 | 0.3584 |
0.4436 | 2.0 | 328 | 0.5930 | 0.7514 | 0.2939 | 0.9723 | 0.3818 | 0.8382 | 0.4153 | 0.6487 | 0.1846 | 0.9167 | 0.5 | 0.4419 | 0.0933 | 0.5951 | 0.1798 | 0.7378 | 0.2927 |
0.387 | 3.0 | 492 | 0.5509 | 0.6821 | 0.2436 | 0.9523 | 0.3735 | 0.7892 | 0.3340 | 0.6094 | 0.1678 | 0.9167 | 0.5 | 0.4230 | 0.0891 | 0.5705 | 0.1871 | 0.7062 | 0.2707 |
0.3575 | 4.0 | 656 | 0.5421 | 0.6836 | 0.2510 | 0.9606 | 0.3818 | 0.7623 | 0.3182 | 0.6037 | 0.1653 | 0.9167 | 0.5 | 0.4145 | 0.0865 | 0.5610 | 0.1721 | 0.7003 | 0.2678 |
Base model
openai/whisper-base