ISALux / README.md
raulbalmez's picture
Update README.md
355dacb verified
metadata
license: mit
tags:
  - low-light
  - low-light-image-enhancement
  - image-enhancement
  - image-restoration
  - computer-vision
  - transformer
  - transformers
  - vision-transformer
  - vision-transformers
  - image-segmentation
  - illumination
  - LoRA
  - Mixture of Experts
model-index:
  - name: ISALux
    results:
      - task:
          type: low-light-image-enhancement
        dataset:
          name: LOL-v1
          type: LOL-v1
        metrics:
          - type: PSNR
            value: 27.63
            name: PSNR
          - type: SSIM
            value: 0.881
            name: SSIM
      - task:
          type: low-light-image-enhancement
        dataset:
          name: LOL-v2-Real
          type: LOL-v2-Real
        metrics:
          - type: PSNR
            value: 29.76
            name: PSNR
          - type: SSIM
            value: 0.908
            name: SSIM
      - task:
          type: low-light-image-enhancement
        dataset:
          name: LOL-v2-Synthetic
          type: LOL-v2-Synthetic
        metrics:
          - type: PSNR
            value: 30.78
            name: PSNR
          - type: SSIM
            value: 0.956
            name: SSIM
      - task:
          type: low-light-image-enhancement
        dataset:
          name: SDSD-indoor
          type: SDSD-indoor
        metrics:
          - type: PSNR
            value: 30.67
            name: PSNR
          - type: SSIM
            value: 0.909
            name: SSIM
      - task:
          type: low-light-image-enhancement
        dataset:
          name: SDSD-outdoor
          type: SDSD-outdoor
        metrics:
          - type: PSNR
            value: 31.58
            name: PSNR
          - type: SSIM
            value: 0.895
            name: SSIM
      - task:
          type: low-light-image-enhancement
        dataset:
          name: LOL Blur
          type: LOL-Blur
        metrics:
          - type: PSNR
            value: 28.01
            name: PSNR
          - type: SSIM
            value: 0.903
            name: SSIM
      - task:
          type: low-light-image-enhancement
        dataset:
          name: MEF
          type: MEF
        metrics:
          - type: NIQE
            value: 3.58
            name: NIQE
      - task:
          type: low-light-image-enhancement
        dataset:
          name: LIME
          type: LIME
        metrics:
          - type: NIQE
            value: 3.91
            name: NIQE
      - task:
          type: low-light-image-enhancement
        dataset:
          name: DICM
          type: DICM
        metrics:
          - type: NIQE
            value: 3.21
            name: NIQE
      - task:
          type: low-light-image-enhancement
        dataset:
          name: NPE
          type: NPE
        metrics:
          - type: NIQE
            value: 3.4
            name: NIQE
pipeline_tag: image-to-image

🌌 ISALux: Illumination & Semantics Aware Transformer with Mixture of Experts

πŸ‘©β€πŸ’» Authors:
Raul Balmez, Alexandru Brateanu, Ciprian Orhei, Codruta Ancuti, Cosmin Ancuti

πŸ“„ arXiv


πŸ”Ž Abstract

We introduce ISALux, a novel transformer-based approach for Low-Light Image Enhancement (LLIE) that integrates both illumination and semantic priors.

✨ Key contributions:

  • HISA-MSA: A new attention block fusing illumination + semantic segmentation.
  • Mixture of Experts (MoE): Improves contextual learning with conditional activation.
  • LoRA-enhanced self-attention: Tackles overfitting across diverse light conditions.

Extensive experiments on multiple benchmarks demonstrate state-of-the-art performance.
Ablation studies highlight the role of each proposed component.


πŸ†• Updates

  • 29.07.2025 πŸŽ‰ Our paper ISALux is live on arXiv!
    Dive in to explore methods, results, and ablations. πŸš€


πŸ“š Citation

@misc{balmez2025isaluxilluminationsegmentationaware,
  title={ISALux: Illumination and Segmentation Aware Transformer Employing Mixture of Experts for Low Light Image Enhancement}, 
  author={Raul Balmez and Alexandru Brateanu and Ciprian Orhei and Codruta Ancuti and Cosmin Ancuti},
  year={2025},
  eprint={2508.17885},
  archivePrefix={arXiv},
  primaryClass={cs.CV},
  url={https://arxiv.org/abs/2508.17885}, 
}