YAML Metadata Warning: The pipeline tag "text2text-generation" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other

bart-large

This model is a fine-tuned version of bart-large on a manually created dataset. It achieves the following results on the evaluation set:

  • Loss: 0.40

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
- 1.0 47 4.5156
...
- 10 490 0.4086

How to use

def generate_text(input_text):
    # Tokenize the input text
    input_tokens = tokenizer(input_text, return_tensors='pt')

    # Move the input tokens to the same device as the model
    input_tokens = input_tokens.to(model.device)

    # Generate text using the fine-tuned model
    output_tokens = model.generate(**input_tokens)

    # Decode the generated tokens to text
    output_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True)

    return output_text

from transformers import BartForConditionalGeneration

# Load the pre-trained BART model from the Hugging Face model hub
model = BartForConditionalGeneration.from_pretrained('rasta/BART-FHIR-question')

input_text = "List all procedures with reason reference to resource with ID 24680135."
output_text = generate_text(input_text)
print(output_text)

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0+cu113
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
7
Safetensors
Model size
406M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support