CrossEncoder based on jhu-clsp/ettin-encoder-68m

This is a Cross Encoder model finetuned from jhu-clsp/ettin-encoder-68m on the ms_marco dataset using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

Model Details

Model Description

  • Model Type: Cross Encoder
  • Base model: jhu-clsp/ettin-encoder-68m
  • Maximum Sequence Length: 7999 tokens
  • Number of Output Labels: 1 label
  • Training Dataset:
  • Language: en

Model Sources

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("rahulseetharaman/reranker-msmarco-v1.1-ettin-encoder-68m-listnet")
# Get scores for pairs of texts
pairs = [
    ['what is the difference between dna and rna', "1 DNA contains the sugar deoxyribose, while RNA contains the sugar ribose. 2  The only difference between ribose and deoxyribose is that ribose has one more-OH group than deoxyribose, which has-H attached to the second (2') carbon in the ring. Although DNA and RNA both carry genetic information, there are quite a few differences between them. This is a comparison of the differences between DNA versus RNA, including a quick summary and a detailed table of the differences."],
    ['what is the difference between dna and rna', 'Tweet. The difference between DNA and RNA in the most basic way is that DNA is double stranded whereas RNA is single stranded. The next difference is that DNA is made from deoxyribose and RNA is made from ribose. Ribose has a hydroxyl group attached to it, making it less stable. The third difference is in the complementary nucleotides that DNA and RNA encode for. DNA has thymine (T), guanine (G), adenine (A) and cytosine (C). '],
    ['what is the difference between dna and rna', "1 The only difference between ribose and deoxyribose is that ribose has one more-OH group than deoxyribose, which has-H attached to the second (2') carbon in the ring. 2  DNA is a double stranded molecule while RNA is a single stranded molecule. 3  DNA is stable under alkaline conditions while RNA is not stable. Although DNA and RNA both carry genetic information, there are quite a few differences between them. This is a comparison of the differences between DNA versus RNA, including a quick summary and a detailed table of the differences."],
    ['what is the difference between dna and rna', 'RNA (Ribonucleic Acid). RNA is a nucleic acid consisting long chain of nucleotide units. Like the DNA molecule, every nucleotide consists of a nitrogenous base, sugar and phosphates. RNA is created by a process known as Transcribing, which involves the following 4 steps: 1  DNA “unzips” as the bonds break. 2  The free nucleotides lead to the RNA pair up with the complementary bases'],
    ['what is the difference between dna and rna', 'Each nucleotide consists of a sugar, a phosphate and a nucleic acid base. The sugar in DNA is deoxyribose. The sugar in RNA is ribose, the same as deoxyribose but with one more OH (oxygen-hydrogen atom combination called a hydroxyl). This is the biggest difference between DNA and RNA. #in DNA the sugar is alpha 2 deoxyribose, whereas in RNA it is alpha ribose. #also one major difference is of the base. in DNA four types of bases are found namely, cytosine, adenine, guanine and thymine. In RNA all the bases are same except thymine.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'what is the difference between dna and rna',
    [
        "1 DNA contains the sugar deoxyribose, while RNA contains the sugar ribose. 2  The only difference between ribose and deoxyribose is that ribose has one more-OH group than deoxyribose, which has-H attached to the second (2') carbon in the ring. Although DNA and RNA both carry genetic information, there are quite a few differences between them. This is a comparison of the differences between DNA versus RNA, including a quick summary and a detailed table of the differences.",
        'Tweet. The difference between DNA and RNA in the most basic way is that DNA is double stranded whereas RNA is single stranded. The next difference is that DNA is made from deoxyribose and RNA is made from ribose. Ribose has a hydroxyl group attached to it, making it less stable. The third difference is in the complementary nucleotides that DNA and RNA encode for. DNA has thymine (T), guanine (G), adenine (A) and cytosine (C). ',
        "1 The only difference between ribose and deoxyribose is that ribose has one more-OH group than deoxyribose, which has-H attached to the second (2') carbon in the ring. 2  DNA is a double stranded molecule while RNA is a single stranded molecule. 3  DNA is stable under alkaline conditions while RNA is not stable. Although DNA and RNA both carry genetic information, there are quite a few differences between them. This is a comparison of the differences between DNA versus RNA, including a quick summary and a detailed table of the differences.",
        'RNA (Ribonucleic Acid). RNA is a nucleic acid consisting long chain of nucleotide units. Like the DNA molecule, every nucleotide consists of a nitrogenous base, sugar and phosphates. RNA is created by a process known as Transcribing, which involves the following 4 steps: 1  DNA “unzips” as the bonds break. 2  The free nucleotides lead to the RNA pair up with the complementary bases',
        'Each nucleotide consists of a sugar, a phosphate and a nucleic acid base. The sugar in DNA is deoxyribose. The sugar in RNA is ribose, the same as deoxyribose but with one more OH (oxygen-hydrogen atom combination called a hydroxyl). This is the biggest difference between DNA and RNA. #in DNA the sugar is alpha 2 deoxyribose, whereas in RNA it is alpha ribose. #also one major difference is of the base. in DNA four types of bases are found namely, cytosine, adenine, guanine and thymine. In RNA all the bases are same except thymine.',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

Evaluation

Metrics

Cross Encoder Reranking

  • Datasets: NanoMSMARCO_R100, NanoNFCorpus_R100 and NanoNQ_R100
  • Evaluated with CrossEncoderRerankingEvaluator with these parameters:
    {
        "at_k": 10,
        "always_rerank_positives": true
    }
    
Metric NanoMSMARCO_R100 NanoNFCorpus_R100 NanoNQ_R100
map 0.5289 (+0.0394) 0.3581 (+0.0971) 0.5743 (+0.1547)
mrr@10 0.5255 (+0.0480) 0.5497 (+0.0499) 0.5841 (+0.1574)
ndcg@10 0.6038 (+0.0634) 0.3783 (+0.0532) 0.6440 (+0.1433)

Cross Encoder Nano BEIR

  • Dataset: NanoBEIR_R100_mean
  • Evaluated with CrossEncoderNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ],
        "rerank_k": 100,
        "at_k": 10,
        "always_rerank_positives": true
    }
    
Metric Value
map 0.4871 (+0.0970)
mrr@10 0.5531 (+0.0851)
ndcg@10 0.5420 (+0.0866)

Training Details

Training Dataset

ms_marco

  • Dataset: ms_marco at a47ee7a
  • Size: 78,704 training samples
  • Columns: query, docs, and labels
  • Approximate statistics based on the first 1000 samples:
    query docs labels
    type string list list
    details
    • min: 9 characters
    • mean: 34.01 characters
    • max: 99 characters
    • min: 3 elements
    • mean: 6.50 elements
    • max: 10 elements
    • min: 3 elements
    • mean: 6.50 elements
    • max: 10 elements
  • Samples:
    query docs labels
    when was automatic washing machine invented ["Bendix Corporation introduced the first automatic washing machine in 1937, having …. In 1937 the Bendix Corporation introduced the world's first automatic washing machine and the lives of housewives was made easier from that day on. Alva J. Fisher invented the first electric washing machine in 1908. It was called the Thor and was manufactured by the Hurley Machine Company in Chicago.", "Brief History of Maytag & Washing Machine Innovations. 1951 - Production of Europe's first automatic washing machines. 1904 - Production of the first washing machines. One of the earliest patent for a clothes dryer(U.S. patent #476,416) was received by George T. Sampson on June 7, 1892. Samson also patented a sled propeller (U.S. patent #312,388) on February 17th, 1885.", "There is dispute over who was the first inventor of the automatic washer. A company called Nineteen Hundred Washing Machine Company of Binghamton, NY claims to have produced the first electric washer in 1906; a year before Thor's release.", 'The First Patents. It is impossible to know exactly who invented the first washing machine and dryer. Some of the patents are so old that nothing is known about the original patent holder. 1 The first British patent for a washing machine was issued in 1691.', 'The invention of the washing machine: Machines with washer and dryer. Bendix Deluxe, a machine loaded in the front, was introduced in 1947, accompanying General Electric’s top-loading automatic model. Some machines were semi-automatic, requiring users to intervene at one point or another.'] [1, 0, 0, 0, 0]
    what is scylla and charybdis ['Being between Scylla and Charybdis is an idiom deriving from Greek mythology, meaning having to choose between two evils. Several other idioms, such as on the horns of a dilemma, between the devil and the deep blue sea , and between a rock and a hard place express the same meaning. ', 'Avoiding Charybdis meant that the ship would be swallowed by the giant sea monster Scylla, and vice versa. Odysseus has his men try to avoid Charybdis, and leads them to Scylla, he then loses many men. Later, when he is on a raft by himself, he comes back and faces the two monsters again, this time being sucked in by Charybdis he survives though, just by holding a tight grip on to a fig tree. Sirens, Scylla and Charybdis=Obstacles Odysseus & crew face while on the ship. Odysseus has now returned to Circe’s island where the goddess guides him through his next exploration, explaining how to avoid the dangers of the Sirens.', "Scylla. by Micha F. Lindemans. In Greek mythology, a sea monster who lived u... [1, 0, 0, 0, 0, ...]
    how long do you need to slow cook a small whole chicken ['4. Cover and cook. Place the cover on the slow cooker and turn it on to high for 4 hours or low for 6 to 8 hours. You do not need to add any liquid. Chickens today typically have some solution added, so they rarely need added liquid. At the end of the cooking time, the meat will be tender, practically falling off the bone. Roast a whole chicken in the slow cooker for tender, delicious cooked chicken. In my neck of the woods, whole chickens go as low as $0.57/pound. Yes, really. There’s generally a limit of three, but yes, the price is that low.', "Making the world better, one answer at a time. I just finished looking up a slow cooker recipe for whole chicken-cook on high for 4-5 hours, or on low for 6-8 hours. Do not remove the lid for the first two hours to prevent heat loss. Add the greens to the slow cooker along with the remaining ingredients. Turn the slow cooker to low and cook 4-6 hours or until the greens are tender and are a gray-green color. Remove the salt pork before serv... [1, 0, 0, 0, 0, ...]
  • Loss: ListNetLoss with these parameters:
    {
        "activation_fn": "torch.nn.modules.linear.Identity",
        "mini_batch_size": 16
    }
    

Evaluation Dataset

ms_marco

  • Dataset: ms_marco at a47ee7a
  • Size: 1,000 evaluation samples
  • Columns: query, docs, and labels
  • Approximate statistics based on the first 1000 samples:
    query docs labels
    type string list list
    details
    • min: 11 characters
    • mean: 33.68 characters
    • max: 94 characters
    • min: 2 elements
    • mean: 6.00 elements
    • max: 10 elements
    • min: 2 elements
    • mean: 6.00 elements
    • max: 10 elements
  • Samples:
    query docs labels
    what is the difference between dna and rna ["1 DNA contains the sugar deoxyribose, while RNA contains the sugar ribose. 2 The only difference between ribose and deoxyribose is that ribose has one more-OH group than deoxyribose, which has-H attached to the second (2') carbon in the ring. Although DNA and RNA both carry genetic information, there are quite a few differences between them. This is a comparison of the differences between DNA versus RNA, including a quick summary and a detailed table of the differences.", 'Tweet. The difference between DNA and RNA in the most basic way is that DNA is double stranded whereas RNA is single stranded. The next difference is that DNA is made from deoxyribose and RNA is made from ribose. Ribose has a hydroxyl group attached to it, making it less stable. The third difference is in the complementary nucleotides that DNA and RNA encode for. DNA has thymine (T), guanine (G), adenine (A) and cytosine (C). ', "1 The only difference between ribose and deoxyribose is that ribose has one more-OH g... [1, 1, 0, 0, 0, ...]
    ecuador location and geography ['Ecuador is a country in western South America, bordering the Pacific Ocean at the Equator, for which the country is named. Ecuador encompasses a wide range of natural formations and climates, from the desert-like southern coast to the snowcapped peaks of the Andes mountain range to the plains of the Amazon Basin. Ecuador is divided into three continental regions—the Costa (coast), Sierra (mountains), and Oriente (east)—and one insular region, the Galapagos Galápagos (islands Officially archipielago Archipiélago). De colon colón the continental regions extend the length of the country from north to south and are Separated By. the andes mountains', 'Map of Ecuador. GEOGRAPHY. Ecuador is located in the western corner at the top of the South American continent. Ecuador, the smallest country in South America, is named after the Equator, the imaginary line around the Earth that splits the country in two. Most of the country is in the Southern Hemisphere.', 'Location of Quito on a map. Quit... [1, 0, 0, 0, 0, ...]
    causes of pterygium ['The primary cause of pterygium is cumulative UV radiation, typically from sun exposure. Dry, windy, and dusty conditions can also contribute to its growth. ', 'To research the causes of Pterygium, consider researching the causes of these these diseases that may be similar, or associated with Pterygium: 1 Ocular mass. 2 Ocular lesion. 3 Corneal surface. 4 Corneal topography. 5 Diplopia. 6 Double vision. 7 Vision loss. ', 'Sometimes, a pterygium causes no symptoms other than its appearance. An enlarging pterygium, however, may cause redness and inflammation. A pterygium can progressively grow onto the cornea (the clear, outer layer of the eye). This can distort the shape of the cornea, causing a condition called astigmatism. The result can be blurred vision.', 'A pterygium, from the Greek word for “wing,” is an abnormal growth of tissue that extends from the conjunctiva (a membrane that covers the white of the eye) onto the cornea. Pterygia may be small, or grow large enough to ... [1, 1, 1, 0, 0, ...]
  • Loss: ListNetLoss with these parameters:
    {
        "activation_fn": "torch.nn.modules.linear.Identity",
        "mini_batch_size": 16
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • seed: 12
  • bf16: True
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 12
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss NanoMSMARCO_R100_ndcg@10 NanoNFCorpus_R100_ndcg@10 NanoNQ_R100_ndcg@10 NanoBEIR_R100_mean_ndcg@10
-1 -1 - - 0.0442 (-0.4962) 0.2555 (-0.0695) 0.0464 (-0.4542) 0.1154 (-0.3400)
0.0002 1 2.6299 - - - - -
0.0203 100 2.0976 2.0794 0.1173 (-0.4231) 0.2127 (-0.1123) 0.1400 (-0.3607) 0.1567 (-0.2987)
0.0407 200 2.0936 2.0765 0.2364 (-0.3041) 0.2546 (-0.0704) 0.2815 (-0.2192) 0.2575 (-0.1979)
0.0610 300 2.0831 2.0736 0.3069 (-0.2335) 0.3083 (-0.0168) 0.3912 (-0.1095) 0.3355 (-0.1199)
0.0813 400 2.0652 2.0724 0.3448 (-0.1957) 0.3274 (+0.0024) 0.4448 (-0.0558) 0.3723 (-0.0830)
0.1016 500 2.0762 2.0701 0.4429 (-0.0975) 0.3032 (-0.0219) 0.4844 (-0.0163) 0.4102 (-0.0452)
0.1220 600 2.0778 2.0690 0.4909 (-0.0496) 0.3097 (-0.0153) 0.6015 (+0.1008) 0.4674 (+0.0120)
0.1423 700 2.0805 2.0687 0.4564 (-0.0840) 0.2922 (-0.0329) 0.5196 (+0.0190) 0.4227 (-0.0326)
0.1626 800 2.0752 2.0679 0.4472 (-0.0932) 0.3165 (-0.0086) 0.5350 (+0.0343) 0.4329 (-0.0225)
0.1830 900 2.0786 2.0674 0.5054 (-0.0350) 0.3363 (+0.0112) 0.5399 (+0.0393) 0.4605 (+0.0052)
0.2033 1000 2.0791 2.0668 0.4596 (-0.0808) 0.3235 (-0.0015) 0.5025 (+0.0019) 0.4285 (-0.0268)
0.2236 1100 2.0714 2.0669 0.5469 (+0.0065) 0.3546 (+0.0296) 0.5718 (+0.0711) 0.4911 (+0.0357)
0.2440 1200 2.0736 2.0668 0.5520 (+0.0116) 0.3521 (+0.0270) 0.5793 (+0.0786) 0.4945 (+0.0391)
0.2643 1300 2.0736 2.0669 0.4914 (-0.0490) 0.3381 (+0.0131) 0.5117 (+0.0111) 0.4471 (-0.0083)
0.2846 1400 2.0761 2.0660 0.5132 (-0.0272) 0.3408 (+0.0158) 0.5294 (+0.0288) 0.4611 (+0.0058)
0.3049 1500 2.0748 2.0671 0.5542 (+0.0138) 0.3374 (+0.0123) 0.5908 (+0.0902) 0.4941 (+0.0388)
0.3253 1600 2.07 2.0662 0.5528 (+0.0124) 0.3474 (+0.0224) 0.5693 (+0.0687) 0.4899 (+0.0345)
0.3456 1700 2.0779 2.0662 0.5249 (-0.0155) 0.3428 (+0.0178) 0.5655 (+0.0649) 0.4778 (+0.0224)
0.3659 1800 2.0712 2.0660 0.5347 (-0.0057) 0.3450 (+0.0200) 0.5988 (+0.0982) 0.4929 (+0.0375)
0.3863 1900 2.0753 2.0661 0.5407 (+0.0002) 0.3199 (-0.0052) 0.5705 (+0.0698) 0.4770 (+0.0216)
0.4066 2000 2.0753 2.0657 0.5704 (+0.0300) 0.3487 (+0.0237) 0.6416 (+0.1410) 0.5203 (+0.0649)
0.4269 2100 2.0724 2.0652 0.5492 (+0.0088) 0.3430 (+0.0180) 0.6159 (+0.1153) 0.5027 (+0.0474)
0.4472 2200 2.0725 2.0651 0.5205 (-0.0199) 0.3445 (+0.0194) 0.5965 (+0.0958) 0.4872 (+0.0318)
0.4676 2300 2.0661 2.0652 0.5510 (+0.0106) 0.3285 (+0.0034) 0.5664 (+0.0657) 0.4819 (+0.0266)
0.4879 2400 2.0754 2.0655 0.5724 (+0.0319) 0.3575 (+0.0324) 0.5413 (+0.0406) 0.4904 (+0.0350)
0.5082 2500 2.0787 2.0652 0.5638 (+0.0234) 0.3214 (-0.0037) 0.5865 (+0.0858) 0.4905 (+0.0352)
0.5286 2600 2.0675 2.0649 0.5611 (+0.0207) 0.3389 (+0.0138) 0.5819 (+0.0812) 0.4940 (+0.0386)
0.5489 2700 2.0773 2.0646 0.5572 (+0.0168) 0.3275 (+0.0024) 0.6053 (+0.1046) 0.4967 (+0.0413)
0.5692 2800 2.0676 2.0649 0.5705 (+0.0301) 0.3277 (+0.0027) 0.5990 (+0.0984) 0.4991 (+0.0437)
0.5896 2900 2.0683 2.0650 0.5334 (-0.0070) 0.3314 (+0.0063) 0.5347 (+0.0340) 0.4665 (+0.0111)
0.6099 3000 2.066 2.0647 0.5408 (+0.0004) 0.3350 (+0.0100) 0.5753 (+0.0747) 0.4837 (+0.0284)
0.6302 3100 2.0591 2.0649 0.5507 (+0.0103) 0.3288 (+0.0038) 0.5792 (+0.0786) 0.4863 (+0.0309)
0.6505 3200 2.0774 2.0644 0.5688 (+0.0284) 0.3358 (+0.0108) 0.5857 (+0.0851) 0.4968 (+0.0414)
0.6709 3300 2.065 2.0645 0.5572 (+0.0168) 0.3567 (+0.0316) 0.6152 (+0.1145) 0.5097 (+0.0543)
0.6912 3400 2.0725 2.0645 0.5604 (+0.0199) 0.3502 (+0.0252) 0.6303 (+0.1297) 0.5136 (+0.0583)
0.7115 3500 2.0683 2.0645 0.5384 (-0.0020) 0.3335 (+0.0085) 0.6037 (+0.1030) 0.4919 (+0.0365)
0.7319 3600 2.0726 2.0646 0.5702 (+0.0298) 0.3299 (+0.0049) 0.5757 (+0.0751) 0.4920 (+0.0366)
0.7522 3700 2.0668 2.0638 0.5794 (+0.0389) 0.3390 (+0.0140) 0.5556 (+0.0549) 0.4913 (+0.0359)
0.7725 3800 2.0681 2.0638 0.5842 (+0.0438) 0.3302 (+0.0052) 0.6060 (+0.1053) 0.5068 (+0.0515)
0.7928 3900 2.0699 2.0636 0.5557 (+0.0152) 0.3491 (+0.0241) 0.5862 (+0.0856) 0.4970 (+0.0416)
0.8132 4000 2.0751 2.0636 0.5563 (+0.0159) 0.3472 (+0.0222) 0.6149 (+0.1142) 0.5061 (+0.0508)
0.8335 4100 2.0744 2.0638 0.5685 (+0.0281) 0.3424 (+0.0173) 0.5695 (+0.0689) 0.4935 (+0.0381)
0.8538 4200 2.0717 2.0642 0.5406 (+0.0002) 0.3155 (-0.0096) 0.5957 (+0.0951) 0.4839 (+0.0286)
0.8742 4300 2.0639 2.0641 0.5637 (+0.0233) 0.3351 (+0.0101) 0.6055 (+0.1048) 0.5015 (+0.0461)
0.8945 4400 2.0778 2.0639 0.5627 (+0.0223) 0.3429 (+0.0178) 0.6575 (+0.1569) 0.5210 (+0.0657)
0.9148 4500 2.0733 2.0638 0.5432 (+0.0028) 0.3306 (+0.0056) 0.5608 (+0.0602) 0.4782 (+0.0228)
0.9351 4600 2.063 2.0638 0.5683 (+0.0279) 0.3305 (+0.0055) 0.5926 (+0.0919) 0.4971 (+0.0418)
0.9555 4700 2.0832 2.0635 0.5781 (+0.0377) 0.3513 (+0.0262) 0.6369 (+0.1363) 0.5221 (+0.0667)
0.9758 4800 2.064 2.0635 0.5704 (+0.0299) 0.3236 (-0.0014) 0.6039 (+0.1033) 0.4993 (+0.0439)
0.9961 4900 2.0681 2.0636 0.5755 (+0.0350) 0.3538 (+0.0287) 0.6151 (+0.1145) 0.5148 (+0.0594)
1.0165 5000 2.0637 2.0635 0.5915 (+0.0511) 0.3704 (+0.0454) 0.6417 (+0.1411) 0.5346 (+0.0792)
1.0368 5100 2.0584 2.0644 0.5549 (+0.0145) 0.3453 (+0.0203) 0.6383 (+0.1377) 0.5129 (+0.0575)
1.0571 5200 2.0607 2.0648 0.6057 (+0.0653) 0.3655 (+0.0405) 0.6150 (+0.1144) 0.5287 (+0.0734)
1.0775 5300 2.0665 2.0652 0.5657 (+0.0252) 0.3521 (+0.0270) 0.6126 (+0.1119) 0.5101 (+0.0547)
1.0978 5400 2.0629 2.0649 0.5252 (-0.0152) 0.3084 (-0.0167) 0.5580 (+0.0574) 0.4639 (+0.0085)
1.1181 5500 2.0689 2.0648 0.5810 (+0.0406) 0.3715 (+0.0465) 0.6543 (+0.1536) 0.5356 (+0.0802)
1.1384 5600 2.0665 2.0650 0.5535 (+0.0131) 0.3593 (+0.0343) 0.6004 (+0.0998) 0.5044 (+0.0490)
1.1588 5700 2.0674 2.0646 0.5610 (+0.0206) 0.3700 (+0.0450) 0.6448 (+0.1441) 0.5253 (+0.0699)
1.1791 5800 2.061 2.0646 0.5546 (+0.0142) 0.3526 (+0.0275) 0.6016 (+0.1009) 0.5029 (+0.0475)
1.1994 5900 2.0597 2.0648 0.5736 (+0.0332) 0.3650 (+0.0399) 0.5981 (+0.0974) 0.5122 (+0.0569)
1.2198 6000 2.0612 2.0642 0.5987 (+0.0583) 0.3538 (+0.0287) 0.5892 (+0.0885) 0.5139 (+0.0585)
1.2401 6100 2.0601 2.0637 0.5634 (+0.0229) 0.3713 (+0.0463) 0.6055 (+0.1048) 0.5134 (+0.0580)
1.2604 6200 2.0636 2.0637 0.5724 (+0.0320) 0.3675 (+0.0424) 0.6268 (+0.1262) 0.5222 (+0.0669)
1.2807 6300 2.0669 2.0642 0.5428 (+0.0024) 0.3458 (+0.0208) 0.6213 (+0.1206) 0.5033 (+0.0479)
1.3011 6400 2.0694 2.0654 0.6038 (+0.0634) 0.3783 (+0.0532) 0.6440 (+0.1433) 0.5420 (+0.0866)
1.3214 6500 2.0675 2.0656 0.5688 (+0.0284) 0.3415 (+0.0165) 0.6025 (+0.1018) 0.5043 (+0.0489)
1.3417 6600 2.063 2.0655 0.5470 (+0.0065) 0.3446 (+0.0196) 0.5891 (+0.0885) 0.4936 (+0.0382)
1.3621 6700 2.0617 2.0650 0.5760 (+0.0355) 0.3629 (+0.0378) 0.6094 (+0.1087) 0.5161 (+0.0607)
1.3824 6800 2.0631 2.0653 0.5677 (+0.0273) 0.3241 (-0.0009) 0.5949 (+0.0942) 0.4956 (+0.0402)
1.4027 6900 2.0669 2.0658 0.5650 (+0.0246) 0.3589 (+0.0339) 0.5598 (+0.0591) 0.4946 (+0.0392)
1.4231 7000 2.0636 2.0654 0.5404 (-0.0000) 0.3481 (+0.0231) 0.5739 (+0.0733) 0.4875 (+0.0321)
1.4434 7100 2.0645 2.0654 0.5668 (+0.0264) 0.3328 (+0.0078) 0.5804 (+0.0798) 0.4934 (+0.0380)
1.4637 7200 2.0659 2.0649 0.5637 (+0.0233) 0.3198 (-0.0052) 0.5477 (+0.0471) 0.4771 (+0.0217)
1.4840 7300 2.0643 2.0647 0.5565 (+0.0161) 0.3238 (-0.0013) 0.5310 (+0.0304) 0.4704 (+0.0151)
1.5044 7400 2.0714 2.0646 0.5846 (+0.0441) 0.3531 (+0.0281) 0.5996 (+0.0990) 0.5124 (+0.0571)
1.5247 7500 2.0594 2.0649 0.5619 (+0.0214) 0.3537 (+0.0286) 0.5659 (+0.0653) 0.4938 (+0.0384)
1.5450 7600 2.0664 2.0647 0.5799 (+0.0394) 0.3506 (+0.0255) 0.5901 (+0.0894) 0.5068 (+0.0515)
1.5654 7700 2.0629 2.0644 0.5458 (+0.0054) 0.3489 (+0.0239) 0.5311 (+0.0304) 0.4753 (+0.0199)
1.5857 7800 2.0616 2.0651 0.5665 (+0.0261) 0.3610 (+0.0360) 0.5450 (+0.0444) 0.4908 (+0.0355)
1.6060 7900 2.0678 2.0643 0.5698 (+0.0294) 0.3756 (+0.0506) 0.5562 (+0.0556) 0.5006 (+0.0452)
1.6263 8000 2.0655 2.0643 0.5692 (+0.0288) 0.3642 (+0.0392) 0.5601 (+0.0594) 0.4978 (+0.0425)
1.6467 8100 2.0642 2.0655 0.5572 (+0.0168) 0.3546 (+0.0296) 0.5773 (+0.0767) 0.4964 (+0.0410)
1.6670 8200 2.0609 2.0644 0.5716 (+0.0312) 0.3705 (+0.0455) 0.5508 (+0.0501) 0.4976 (+0.0423)
1.6873 8300 2.0617 2.0648 0.5468 (+0.0063) 0.3489 (+0.0239) 0.5482 (+0.0475) 0.4813 (+0.0259)
1.7077 8400 2.0608 2.0656 0.5677 (+0.0273) 0.3512 (+0.0261) 0.5960 (+0.0953) 0.5050 (+0.0496)
1.7280 8500 2.0682 2.0667 0.5796 (+0.0391) 0.3318 (+0.0067) 0.5862 (+0.0855) 0.4992 (+0.0438)
1.7483 8600 2.0658 2.0652 0.5655 (+0.0251) 0.3403 (+0.0152) 0.5936 (+0.0930) 0.4998 (+0.0444)
1.7687 8700 2.0593 2.0645 0.5365 (-0.0039) 0.3454 (+0.0204) 0.6317 (+0.1311) 0.5046 (+0.0492)
1.7890 8800 2.0601 2.0650 0.5384 (-0.0021) 0.3516 (+0.0265) 0.5958 (+0.0952) 0.4953 (+0.0399)
1.8093 8900 2.0654 2.0642 0.5608 (+0.0204) 0.3340 (+0.0090) 0.6094 (+0.1087) 0.5014 (+0.0460)
1.8296 9000 2.061 2.0645 0.5773 (+0.0369) 0.3405 (+0.0155) 0.6160 (+0.1153) 0.5113 (+0.0559)
1.8500 9100 2.0637 2.0646 0.5371 (-0.0033) 0.3161 (-0.0090) 0.6063 (+0.1057) 0.4865 (+0.0311)
1.8703 9200 2.0555 2.0654 0.5577 (+0.0173) 0.3397 (+0.0147) 0.5915 (+0.0908) 0.4963 (+0.0409)
1.8906 9300 2.0725 2.0643 0.5633 (+0.0229) 0.3455 (+0.0205) 0.5919 (+0.0913) 0.5003 (+0.0449)
1.9110 9400 2.0567 2.0646 0.5381 (-0.0023) 0.3546 (+0.0295) 0.5991 (+0.0985) 0.4973 (+0.0419)
1.9313 9500 2.0626 2.0645 0.5532 (+0.0128) 0.3450 (+0.0200) 0.6158 (+0.1152) 0.5047 (+0.0493)
1.9516 9600 2.0674 2.0644 0.5642 (+0.0238) 0.3540 (+0.0289) 0.5974 (+0.0968) 0.5052 (+0.0498)
1.9719 9700 2.0577 2.0640 0.5489 (+0.0085) 0.3493 (+0.0243) 0.5965 (+0.0959) 0.4983 (+0.0429)
1.9923 9800 2.0692 2.0646 0.5319 (-0.0085) 0.3461 (+0.0211) 0.5936 (+0.0929) 0.4905 (+0.0352)
2.0126 9900 2.0467 2.0680 0.5408 (+0.0003) 0.3646 (+0.0395) 0.6232 (+0.1225) 0.5095 (+0.0541)
2.0329 10000 2.0507 2.0688 0.5189 (-0.0215) 0.3667 (+0.0417) 0.5921 (+0.0915) 0.4926 (+0.0372)
2.0533 10100 2.0508 2.0715 0.5391 (-0.0013) 0.3619 (+0.0369) 0.6070 (+0.1063) 0.5027 (+0.0473)
2.0736 10200 2.058 2.0687 0.5351 (-0.0053) 0.3560 (+0.0309) 0.5843 (+0.0836) 0.4918 (+0.0364)
2.0939 10300 2.0412 2.0713 0.5201 (-0.0204) 0.3474 (+0.0223) 0.5567 (+0.0561) 0.4747 (+0.0193)
2.1143 10400 2.0448 2.0697 0.5271 (-0.0134) 0.3529 (+0.0279) 0.5823 (+0.0817) 0.4874 (+0.0321)
2.1346 10500 2.0466 2.0714 0.5140 (-0.0264) 0.3549 (+0.0298) 0.5575 (+0.0569) 0.4755 (+0.0201)
2.1549 10600 2.0436 2.0702 0.5165 (-0.0239) 0.3561 (+0.0311) 0.5354 (+0.0348) 0.4693 (+0.0140)
2.1752 10700 2.0452 2.0679 0.5200 (-0.0205) 0.3754 (+0.0504) 0.5239 (+0.0232) 0.4731 (+0.0177)
2.1956 10800 2.0528 2.0702 0.5413 (+0.0009) 0.3445 (+0.0195) 0.5386 (+0.0379) 0.4748 (+0.0194)
2.2159 10900 2.0509 2.0693 0.5357 (-0.0047) 0.3488 (+0.0238) 0.5594 (+0.0588) 0.4813 (+0.0260)
2.2362 11000 2.0558 2.0692 0.5426 (+0.0022) 0.3538 (+0.0288) 0.5411 (+0.0404) 0.4792 (+0.0238)
2.2566 11100 2.0376 2.0701 0.5144 (-0.0261) 0.3308 (+0.0057) 0.4771 (-0.0235) 0.4408 (-0.0146)
2.2769 11200 2.0491 2.0689 0.5112 (-0.0292) 0.3331 (+0.0080) 0.5029 (+0.0022) 0.4490 (-0.0063)
2.2972 11300 2.0456 2.0709 0.5185 (-0.0219) 0.3489 (+0.0239) 0.4797 (-0.0209) 0.4490 (-0.0063)
2.3175 11400 2.0432 2.0718 0.5242 (-0.0163) 0.3528 (+0.0278) 0.5098 (+0.0092) 0.4623 (+0.0069)
2.3379 11500 2.0561 2.0701 0.5291 (-0.0113) 0.3553 (+0.0303) 0.5532 (+0.0526) 0.4792 (+0.0238)
2.3582 11600 2.0493 2.0704 0.5404 (-0.0001) 0.3422 (+0.0172) 0.5461 (+0.0454) 0.4762 (+0.0208)
2.3785 11700 2.0484 2.0703 0.5367 (-0.0037) 0.3548 (+0.0298) 0.5600 (+0.0594) 0.4839 (+0.0285)
2.3989 11800 2.0536 2.0708 0.5367 (-0.0037) 0.3626 (+0.0376) 0.5235 (+0.0229) 0.4743 (+0.0189)
2.4192 11900 2.0517 2.0710 0.5515 (+0.0111) 0.3413 (+0.0163) 0.5232 (+0.0225) 0.4720 (+0.0166)
2.4395 12000 2.0491 2.0707 0.5267 (-0.0137) 0.3488 (+0.0238) 0.5296 (+0.0289) 0.4684 (+0.0130)
2.4598 12100 2.0448 2.0710 0.5252 (-0.0152) 0.3543 (+0.0292) 0.5164 (+0.0157) 0.4653 (+0.0099)
2.4802 12200 2.0443 2.0711 0.5377 (-0.0027) 0.3477 (+0.0227) 0.5152 (+0.0146) 0.4669 (+0.0115)
2.5005 12300 2.0477 2.0699 0.5087 (-0.0317) 0.3396 (+0.0146) 0.5152 (+0.0146) 0.4545 (-0.0009)
2.5208 12400 2.0474 2.0698 0.5283 (-0.0121) 0.3473 (+0.0223) 0.5336 (+0.0330) 0.4697 (+0.0144)
2.5412 12500 2.0489 2.0692 0.5246 (-0.0159) 0.3575 (+0.0324) 0.5376 (+0.0370) 0.4732 (+0.0178)
2.5615 12600 2.0516 2.0711 0.5360 (-0.0044) 0.3498 (+0.0247) 0.5496 (+0.0489) 0.4785 (+0.0231)
2.5818 12700 2.0417 2.0705 0.5438 (+0.0034) 0.3569 (+0.0318) 0.5264 (+0.0258) 0.4757 (+0.0203)
2.6022 12800 2.0508 2.0703 0.5186 (-0.0218) 0.3494 (+0.0243) 0.5340 (+0.0334) 0.4673 (+0.0120)
2.6225 12900 2.049 2.0728 0.5161 (-0.0244) 0.3444 (+0.0193) 0.5397 (+0.0391) 0.4667 (+0.0114)
2.6428 13000 2.0493 2.0725 0.5319 (-0.0085) 0.3467 (+0.0216) 0.5565 (+0.0558) 0.4784 (+0.0230)
2.6631 13100 2.0532 2.0731 0.5318 (-0.0087) 0.3426 (+0.0175) 0.5512 (+0.0506) 0.4752 (+0.0198)
2.6835 13200 2.0502 2.0712 0.5292 (-0.0112) 0.3403 (+0.0152) 0.5532 (+0.0525) 0.4742 (+0.0189)
2.7038 13300 2.0449 2.0745 0.5240 (-0.0164) 0.3545 (+0.0295) 0.5192 (+0.0185) 0.4659 (+0.0105)
2.7241 13400 2.0487 2.0709 0.5272 (-0.0132) 0.3593 (+0.0343) 0.5299 (+0.0292) 0.4721 (+0.0168)
2.7445 13500 2.0397 2.0709 0.5364 (-0.0040) 0.3647 (+0.0397) 0.5284 (+0.0278) 0.4765 (+0.0211)
2.7648 13600 2.0394 2.0711 0.5524 (+0.0119) 0.3607 (+0.0356) 0.5300 (+0.0293) 0.4810 (+0.0256)
2.7851 13700 2.0564 2.0724 0.5432 (+0.0028) 0.3597 (+0.0346) 0.5214 (+0.0207) 0.4747 (+0.0194)
2.8054 13800 2.0577 2.0736 0.5250 (-0.0154) 0.3659 (+0.0409) 0.5433 (+0.0426) 0.4781 (+0.0227)
2.8258 13900 2.0501 2.0726 0.5376 (-0.0028) 0.3501 (+0.0251) 0.5174 (+0.0167) 0.4684 (+0.0130)
2.8461 14000 2.0508 2.0698 0.5363 (-0.0042) 0.3528 (+0.0278) 0.5319 (+0.0313) 0.4737 (+0.0183)
2.8664 14100 2.0414 2.0706 0.5482 (+0.0077) 0.3445 (+0.0194) 0.5027 (+0.0020) 0.4651 (+0.0097)
2.8868 14200 2.0358 2.0697 0.5317 (-0.0087) 0.3581 (+0.0331) 0.5322 (+0.0316) 0.4740 (+0.0187)
2.9071 14300 2.0517 2.0730 0.5222 (-0.0183) 0.3528 (+0.0278) 0.5416 (+0.0410) 0.4722 (+0.0168)
2.9274 14400 2.0539 2.0708 0.5096 (-0.0308) 0.3587 (+0.0336) 0.5381 (+0.0374) 0.4688 (+0.0134)
2.9478 14500 2.0528 2.0739 0.5205 (-0.0199) 0.3518 (+0.0268) 0.5263 (+0.0257) 0.4662 (+0.0108)
2.9681 14600 2.0467 2.0716 0.5101 (-0.0303) 0.3392 (+0.0142) 0.5453 (+0.0447) 0.4649 (+0.0095)
2.9884 14700 2.0504 2.0720 0.5168 (-0.0236) 0.3428 (+0.0178) 0.5155 (+0.0149) 0.4584 (+0.0030)
3.0087 14800 2.0284 2.0752 0.4940 (-0.0464) 0.3604 (+0.0354) 0.5090 (+0.0083) 0.4544 (-0.0009)
3.0291 14900 2.0364 2.0757 0.4756 (-0.0649) 0.3552 (+0.0301) 0.4839 (-0.0167) 0.4382 (-0.0172)
3.0494 15000 2.0331 2.0757 0.4731 (-0.0673) 0.3365 (+0.0114) 0.4868 (-0.0138) 0.4322 (-0.0232)
3.0697 15100 2.029 2.0797 0.4908 (-0.0496) 0.3437 (+0.0186) 0.4940 (-0.0066) 0.4428 (-0.0125)
3.0901 15200 2.038 2.0784 0.4806 (-0.0598) 0.3452 (+0.0201) 0.4385 (-0.0622) 0.4214 (-0.0340)
3.1104 15300 2.0306 2.0772 0.4830 (-0.0574) 0.3511 (+0.0261) 0.4598 (-0.0409) 0.4313 (-0.0241)
3.1307 15400 2.0332 2.0782 0.4620 (-0.0784) 0.3417 (+0.0167) 0.4302 (-0.0705) 0.4113 (-0.0441)
3.1510 15500 2.0151 2.0761 0.4839 (-0.0566) 0.3400 (+0.0149) 0.4543 (-0.0463) 0.4261 (-0.0293)
3.1714 15600 2.0193 2.0768 0.4594 (-0.0810) 0.3422 (+0.0172) 0.4528 (-0.0478) 0.4182 (-0.0372)
3.1917 15700 2.0331 2.0794 0.4812 (-0.0592) 0.3474 (+0.0223) 0.4562 (-0.0444) 0.4283 (-0.0271)
3.2120 15800 2.0313 2.0802 0.4700 (-0.0704) 0.3497 (+0.0247) 0.4750 (-0.0256) 0.4316 (-0.0238)
3.2324 15900 2.0205 2.0793 0.4746 (-0.0658) 0.3435 (+0.0185) 0.4615 (-0.0392) 0.4265 (-0.0289)
3.2527 16000 2.0385 2.0773 0.4793 (-0.0611) 0.3434 (+0.0184) 0.4676 (-0.0330) 0.4301 (-0.0253)
3.2730 16100 2.0364 2.0787 0.4890 (-0.0514) 0.3416 (+0.0166) 0.4497 (-0.0510) 0.4268 (-0.0286)
3.2934 16200 2.0311 2.0784 0.4889 (-0.0516) 0.3549 (+0.0299) 0.4529 (-0.0478) 0.4322 (-0.0231)
3.3137 16300 2.0272 2.0782 0.4641 (-0.0763) 0.3476 (+0.0226) 0.4499 (-0.0508) 0.4205 (-0.0348)
3.3340 16400 2.0313 2.0778 0.4643 (-0.0761) 0.3547 (+0.0297) 0.4710 (-0.0296) 0.4300 (-0.0253)
3.3543 16500 2.0243 2.0781 0.4717 (-0.0687) 0.3498 (+0.0247) 0.4545 (-0.0462) 0.4253 (-0.0301)
3.3747 16600 2.0317 2.0789 0.4657 (-0.0747) 0.3376 (+0.0125) 0.4367 (-0.0639) 0.4133 (-0.0420)
3.3950 16700 2.0263 2.0786 0.4715 (-0.0689) 0.3467 (+0.0217) 0.4460 (-0.0546) 0.4214 (-0.0340)
3.4153 16800 2.0224 2.0783 0.4734 (-0.0671) 0.3537 (+0.0286) 0.4608 (-0.0399) 0.4293 (-0.0261)
3.4357 16900 2.0365 2.0772 0.4693 (-0.0711) 0.3484 (+0.0233) 0.4554 (-0.0452) 0.4244 (-0.0310)
3.4560 17000 2.0337 2.0773 0.4767 (-0.0637) 0.3485 (+0.0234) 0.4454 (-0.0553) 0.4235 (-0.0318)
3.4763 17100 2.0326 2.0775 0.4850 (-0.0554) 0.3389 (+0.0138) 0.4197 (-0.0809) 0.4146 (-0.0408)
3.4966 17200 2.0285 2.0811 0.4753 (-0.0651) 0.3410 (+0.0159) 0.4285 (-0.0722) 0.4149 (-0.0405)
3.5170 17300 2.0367 2.0803 0.4697 (-0.0707) 0.3357 (+0.0107) 0.4277 (-0.0729) 0.4111 (-0.0443)
3.5373 17400 2.0319 2.0773 0.4779 (-0.0625) 0.3366 (+0.0116) 0.4325 (-0.0681) 0.4157 (-0.0397)
3.5576 17500 2.0314 2.0769 0.4802 (-0.0603) 0.3437 (+0.0186) 0.4565 (-0.0442) 0.4268 (-0.0286)
3.5780 17600 2.0383 2.0784 0.4790 (-0.0614) 0.3423 (+0.0172) 0.4416 (-0.0591) 0.4210 (-0.0344)
3.5983 17700 2.0305 2.0789 0.4860 (-0.0544) 0.3321 (+0.0071) 0.4363 (-0.0643) 0.4181 (-0.0372)
3.6186 17800 2.0341 2.0771 0.4872 (-0.0532) 0.3420 (+0.0169) 0.4339 (-0.0668) 0.4210 (-0.0344)
3.6390 17900 2.0348 2.0798 0.4823 (-0.0581) 0.3387 (+0.0137) 0.4746 (-0.0261) 0.4319 (-0.0235)
3.6593 18000 2.0198 2.0774 0.4788 (-0.0616) 0.3436 (+0.0186) 0.4468 (-0.0539) 0.4231 (-0.0323)
3.6796 18100 2.0253 2.0786 0.4914 (-0.0490) 0.3507 (+0.0257) 0.4724 (-0.0283) 0.4382 (-0.0172)
3.6999 18200 2.0392 2.0781 0.4812 (-0.0592) 0.3550 (+0.0300) 0.4548 (-0.0458) 0.4303 (-0.0250)
3.7203 18300 2.0295 2.0784 0.4681 (-0.0724) 0.3527 (+0.0277) 0.4677 (-0.0330) 0.4295 (-0.0259)
3.7406 18400 2.0289 2.0781 0.4676 (-0.0728) 0.3504 (+0.0253) 0.4679 (-0.0327) 0.4286 (-0.0267)
3.7609 18500 2.0257 2.0797 0.4768 (-0.0637) 0.3518 (+0.0267) 0.4806 (-0.0200) 0.4364 (-0.0190)
3.7813 18600 2.0219 2.0801 0.4885 (-0.0519) 0.3376 (+0.0125) 0.4705 (-0.0301) 0.4322 (-0.0232)
3.8016 18700 2.0279 2.0796 0.4939 (-0.0465) 0.3440 (+0.0189) 0.4858 (-0.0149) 0.4412 (-0.0141)
3.8219 18800 2.0289 2.0797 0.4834 (-0.0570) 0.3437 (+0.0186) 0.4955 (-0.0052) 0.4408 (-0.0145)
3.8422 18900 2.0367 2.0816 0.4913 (-0.0491) 0.3426 (+0.0175) 0.4905 (-0.0102) 0.4415 (-0.0139)
3.8626 19000 2.0428 2.0797 0.4815 (-0.0589) 0.3444 (+0.0193) 0.4815 (-0.0191) 0.4358 (-0.0196)
3.8829 19100 2.0341 2.0787 0.4741 (-0.0664) 0.3519 (+0.0269) 0.4891 (-0.0116) 0.4383 (-0.0170)
3.9032 19200 2.0342 2.0782 0.4766 (-0.0638) 0.3420 (+0.0170) 0.4618 (-0.0388) 0.4268 (-0.0286)
3.9236 19300 2.0179 2.0772 0.4841 (-0.0564) 0.3491 (+0.0241) 0.4384 (-0.0622) 0.4239 (-0.0315)
3.9439 19400 2.0412 2.0781 0.4769 (-0.0635) 0.3426 (+0.0175) 0.4551 (-0.0456) 0.4249 (-0.0305)
3.9642 19500 2.0276 2.0765 0.4827 (-0.0578) 0.3409 (+0.0159) 0.4851 (-0.0155) 0.4362 (-0.0191)
3.9845 19600 2.0277 2.0770 0.4841 (-0.0563) 0.3416 (+0.0165) 0.4734 (-0.0273) 0.4330 (-0.0223)
4.0049 19700 2.0313 2.0791 0.4884 (-0.0521) 0.3417 (+0.0166) 0.4562 (-0.0444) 0.4287 (-0.0266)
4.0252 19800 2.0197 2.0798 0.4585 (-0.0819) 0.3478 (+0.0228) 0.4545 (-0.0461) 0.4203 (-0.0351)
4.0455 19900 2.0214 2.0826 0.4679 (-0.0725) 0.3414 (+0.0163) 0.4501 (-0.0506) 0.4198 (-0.0356)
4.0659 20000 2.011 2.0833 0.4463 (-0.0941) 0.3408 (+0.0158) 0.4275 (-0.0731) 0.4049 (-0.0505)
4.0862 20100 2.0139 2.0835 0.4689 (-0.0715) 0.3445 (+0.0195) 0.4111 (-0.0896) 0.4082 (-0.0472)
4.1065 20200 2.0269 2.0813 0.4422 (-0.0983) 0.3447 (+0.0197) 0.3871 (-0.1135) 0.3913 (-0.0640)
4.1269 20300 2.0214 2.0826 0.4389 (-0.1016) 0.3396 (+0.0145) 0.3781 (-0.1226) 0.3855 (-0.0699)
4.1472 20400 2.028 2.0838 0.4562 (-0.0842) 0.3411 (+0.0160) 0.4128 (-0.0878) 0.4034 (-0.0520)
4.1675 20500 2.0165 2.0818 0.4596 (-0.0808) 0.3356 (+0.0105) 0.4241 (-0.0766) 0.4064 (-0.0490)
4.1878 20600 2.0208 2.0820 0.4744 (-0.0660) 0.3440 (+0.0190) 0.3967 (-0.1040) 0.4050 (-0.0503)
4.2082 20700 2.0151 2.0831 0.4558 (-0.0846) 0.3404 (+0.0154) 0.4029 (-0.0977) 0.3997 (-0.0557)
4.2285 20800 2.023 2.0844 0.4317 (-0.1087) 0.3368 (+0.0117) 0.4272 (-0.0734) 0.3986 (-0.0568)
4.2488 20900 2.0162 2.0821 0.4356 (-0.1048) 0.3382 (+0.0132) 0.3950 (-0.1057) 0.3896 (-0.0658)
4.2692 21000 2.0114 2.0816 0.4418 (-0.0986) 0.3349 (+0.0098) 0.3830 (-0.1177) 0.3865 (-0.0688)
4.2895 21100 2.0153 2.0823 0.4449 (-0.0955) 0.3339 (+0.0088) 0.4023 (-0.0983) 0.3937 (-0.0617)
4.3098 21200 2.0159 2.0827 0.4317 (-0.1087) 0.3345 (+0.0094) 0.4147 (-0.0860) 0.3936 (-0.0618)
4.3301 21300 2.0277 2.0818 0.4354 (-0.1051) 0.3401 (+0.0151) 0.3851 (-0.1156) 0.3868 (-0.0685)
4.3505 21400 2.0176 2.0819 0.4439 (-0.0965) 0.3434 (+0.0184) 0.4006 (-0.1000) 0.3960 (-0.0594)
4.3708 21500 2.0242 2.0816 0.4532 (-0.0872) 0.3338 (+0.0088) 0.3988 (-0.1018) 0.3953 (-0.0601)
4.3911 21600 2.0279 2.0814 0.4509 (-0.0895) 0.3383 (+0.0133) 0.4082 (-0.0925) 0.3991 (-0.0562)
4.4115 21700 2.0172 2.0818 0.4372 (-0.1032) 0.3360 (+0.0110) 0.4029 (-0.0977) 0.3920 (-0.0633)
4.4318 21800 2.0188 2.0831 0.4556 (-0.0848) 0.3373 (+0.0123) 0.4097 (-0.0909) 0.4009 (-0.0545)
4.4521 21900 2.0151 2.0824 0.4455 (-0.0950) 0.3349 (+0.0098) 0.3960 (-0.1046) 0.3921 (-0.0632)
4.4725 22000 2.0149 2.0824 0.4510 (-0.0894) 0.3328 (+0.0077) 0.3974 (-0.1032) 0.3937 (-0.0616)
4.4928 22100 2.0147 2.0818 0.4295 (-0.1109) 0.3237 (-0.0014) 0.4090 (-0.0916) 0.3874 (-0.0680)
4.5131 22200 2.0187 2.0826 0.4459 (-0.0946) 0.3312 (+0.0062) 0.4176 (-0.0830) 0.3982 (-0.0571)
4.5334 22300 2.0178 2.0828 0.4375 (-0.1029) 0.3325 (+0.0075) 0.4199 (-0.0808) 0.3966 (-0.0587)
4.5538 22400 2.0213 2.0823 0.4401 (-0.1003) 0.3369 (+0.0119) 0.3903 (-0.1103) 0.3891 (-0.0662)
4.5741 22500 2.0133 2.0826 0.4406 (-0.0999) 0.3397 (+0.0147) 0.4180 (-0.0826) 0.3994 (-0.0559)
4.5944 22600 2.0209 2.0819 0.4548 (-0.0856) 0.3305 (+0.0055) 0.4084 (-0.0922) 0.3979 (-0.0575)
4.6148 22700 2.018 2.0823 0.4372 (-0.1032) 0.3353 (+0.0103) 0.4014 (-0.0993) 0.3913 (-0.0641)
4.6351 22800 2.0183 2.0825 0.4469 (-0.0936) 0.3300 (+0.0050) 0.3933 (-0.1073) 0.3901 (-0.0653)
4.6554 22900 2.0199 2.0829 0.4368 (-0.1036) 0.3259 (+0.0009) 0.3821 (-0.1186) 0.3816 (-0.0738)
4.6757 23000 2.0222 2.0822 0.4399 (-0.1005) 0.3385 (+0.0135) 0.3704 (-0.1303) 0.3829 (-0.0724)
4.6961 23100 2.0284 2.0821 0.4404 (-0.1000) 0.3360 (+0.0109) 0.3984 (-0.1023) 0.3916 (-0.0638)
4.7164 23200 2.0115 2.0832 0.4354 (-0.1051) 0.3423 (+0.0173) 0.3879 (-0.1128) 0.3885 (-0.0668)
4.7367 23300 2.0193 2.0823 0.4384 (-0.1020) 0.3402 (+0.0151) 0.3943 (-0.1064) 0.3909 (-0.0644)
4.7571 23400 2.0157 2.0828 0.4196 (-0.1208) 0.3419 (+0.0169) 0.3944 (-0.1062) 0.3853 (-0.0701)
4.7774 23500 2.0222 2.0830 0.4369 (-0.1035) 0.3317 (+0.0067) 0.4125 (-0.0882) 0.3937 (-0.0617)
4.7977 23600 2.019 2.0829 0.4358 (-0.1046) 0.3428 (+0.0178) 0.4047 (-0.0959) 0.3944 (-0.0609)
4.8181 23700 2.0117 2.0827 0.4385 (-0.1019) 0.3398 (+0.0148) 0.4043 (-0.0963) 0.3942 (-0.0612)
4.8384 23800 2.0257 2.0830 0.4485 (-0.0919) 0.3381 (+0.0130) 0.4013 (-0.0993) 0.3960 (-0.0594)
4.8587 23900 2.0234 2.0825 0.4425 (-0.0979) 0.3419 (+0.0169) 0.3945 (-0.1062) 0.3930 (-0.0624)
4.8790 24000 2.0174 2.0832 0.4423 (-0.0982) 0.3383 (+0.0133) 0.4012 (-0.0994) 0.3939 (-0.0614)
4.8994 24100 2.0215 2.0829 0.4494 (-0.0911) 0.3387 (+0.0137) 0.3903 (-0.1104) 0.3928 (-0.0626)
4.9197 24200 2.015 2.0833 0.4518 (-0.0886) 0.3410 (+0.0160) 0.3894 (-0.1112) 0.3941 (-0.0613)
4.9400 24300 2.016 2.0831 0.4366 (-0.1038) 0.3459 (+0.0209) 0.3908 (-0.1098) 0.3911 (-0.0643)
4.9604 24400 2.0192 2.0831 0.4423 (-0.0982) 0.3424 (+0.0174) 0.3899 (-0.1107) 0.3915 (-0.0638)
4.9807 24500 2.022 2.0831 0.4491 (-0.0913) 0.3494 (+0.0243) 0.3900 (-0.1106) 0.3962 (-0.0592)
-1 -1 - - 0.6038 (+0.0634) 0.3783 (+0.0532) 0.6440 (+0.1433) 0.5420 (+0.0866)
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.18
  • Sentence Transformers: 5.0.0
  • Transformers: 4.56.0.dev0
  • PyTorch: 2.7.1+cu126
  • Accelerate: 1.9.0
  • Datasets: 4.0.0
  • Tokenizers: 0.21.4

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

ListNetLoss

@inproceedings{cao2007learning,
    title={Learning to Rank: From Pairwise Approach to Listwise Approach},
    author={Cao, Zhe and Qin, Tao and Liu, Tie-Yan and Tsai, Ming-Feng and Li, Hang},
    booktitle={Proceedings of the 24th international conference on Machine learning},
    pages={129--136},
    year={2007}
}
Downloads last month
-
Safetensors
Model size
68.4M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rahulseetharaman/reranker-msmarco-v1.1-ettin-encoder-68m-listnet

Finetuned
(6)
this model

Dataset used to train rahulseetharaman/reranker-msmarco-v1.1-ettin-encoder-68m-listnet

Evaluation results