bert-base-uncased-rahuldave-issues-128

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2505

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss
2.1019 1.0 291 1.6982
1.6376 2.0 582 1.4442
1.4815 3.0 873 1.3822
1.3996 4.0 1164 1.3695
1.3416 5.0 1455 1.1960
1.2824 6.0 1746 1.2835
1.2404 7.0 2037 1.2664
1.2022 8.0 2328 1.2082
1.1669 9.0 2619 1.1798
1.1424 10.0 2910 1.2211
1.1269 11.0 3201 1.2019
1.1036 12.0 3492 1.1649
1.0802 13.0 3783 1.2438
1.0759 14.0 4074 1.1716
1.0629 15.0 4365 1.1270
1.0639 16.0 4656 1.2505

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2
Downloads last month
1
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.