|
--- |
|
library_name: pytorch |
|
license: agpl-3.0 |
|
tags: |
|
- real_time |
|
- quantized |
|
- android |
|
pipeline_tag: object-detection |
|
|
|
--- |
|
|
|
 |
|
|
|
# YOLOv11-Detection-Quantized: Optimized for Mobile Deployment |
|
## Quantized real-time object detection optimized for mobile and edge by Ultralytics |
|
|
|
|
|
Ultralytics YOLOv11 is a machine learning model that predicts bounding boxes and classes of objects in an image. This model is post-training quantized to int8 using samples from the COCO dataset. |
|
|
|
This model is an implementation of YOLOv11-Detection-Quantized found [here](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/detect). |
|
|
|
|
|
More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/yolov11_det_quantized). |
|
|
|
### Model Details |
|
|
|
- **Model Type:** Object detection |
|
- **Model Stats:** |
|
- Model checkpoint: YOLOv11-N |
|
- Input resolution: 640x640 |
|
- Number of parameters: 2.64M |
|
- Model size: 2.83 MB |
|
- Precision: w8a8 (8-bit weights, 8-bit activations) |
|
|
|
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model |
|
|---|---|---|---|---|---|---|---|---| |
|
| YOLOv11-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 1.825 ms | 0 - 11 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 1.846 ms | 1 - 3 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 10.611 ms | 0 - 22 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 1.208 ms | 0 - 33 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 1.202 ms | 1 - 20 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 7.764 ms | 1 - 66 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.92 ms | 0 - 26 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 1.039 ms | 1 - 30 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 6.646 ms | 1 - 60 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | SA7255P ADP | SA7255P | TFLITE | 9.047 ms | 0 - 22 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | SA7255P ADP | SA7255P | QNN | 8.951 ms | 1 - 11 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 1.824 ms | 0 - 10 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 1.821 ms | 1 - 3 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | SA8295P ADP | SA8295P | TFLITE | 2.668 ms | 0 - 24 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | SA8295P ADP | SA8295P | QNN | 2.645 ms | 1 - 19 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 1.832 ms | 0 - 12 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 1.813 ms | 0 - 2 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | SA8775P ADP | SA8775P | TFLITE | 2.756 ms | 0 - 22 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | SA8775P ADP | SA8775P | QNN | 2.72 ms | 1 - 11 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 4.275 ms | 0 - 32 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 5.742 ms | 1 - 13 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 64.699 ms | 1 - 13 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 9.047 ms | 0 - 22 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 8.951 ms | 1 - 11 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 1.818 ms | 0 - 11 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 1.798 ms | 1 - 4 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 2.756 ms | 0 - 22 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 2.72 ms | 1 - 11 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 2.16 ms | 0 - 36 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 2.393 ms | 1 - 31 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 2.085 ms | 1 - 1 MB | INT8 | NPU | -- | |
|
| YOLOv11-Detection-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 11.223 ms | 2 - 2 MB | INT8 | NPU | -- | |
|
|
|
|
|
|
|
|
|
## License |
|
* The license for the original implementation of YOLOv11-Detection-Quantized can be found |
|
[here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE). |
|
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) |
|
|
|
|
|
|
|
## References |
|
* [Ultralytics YOLOv8 Docs: Object Detection](https://docs.ultralytics.com/tasks/detect/) |
|
* [Source Model Implementation](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/detect) |
|
|
|
|
|
|
|
## Community |
|
* Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI. |
|
* For questions or feedback please [reach out to us](mailto:[email protected]). |
|
|
|
## Usage and Limitations |
|
|
|
Model may not be used for or in connection with any of the following applications: |
|
|
|
- Accessing essential private and public services and benefits; |
|
- Administration of justice and democratic processes; |
|
- Assessing or recognizing the emotional state of a person; |
|
- Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics; |
|
- Education and vocational training; |
|
- Employment and workers management; |
|
- Exploitation of the vulnerabilities of persons resulting in harmful behavior; |
|
- General purpose social scoring; |
|
- Law enforcement; |
|
- Management and operation of critical infrastructure; |
|
- Migration, asylum and border control management; |
|
- Predictive policing; |
|
- Real-time remote biometric identification in public spaces; |
|
- Recommender systems of social media platforms; |
|
- Scraping of facial images (from the internet or otherwise); and/or |
|
- Subliminal manipulation |
|
|