qaihm-bot commited on
Commit
f96b2e1
·
verified ·
1 Parent(s): df164c5

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +28 -28
README.md CHANGED
@@ -168,14 +168,29 @@ from qai_hub_models.models.controlnet_quantized import Model
168
 
169
  # Load the model
170
  model = Model.from_pretrained()
 
171
  text_encoder_model = model.text_encoder
172
  unet_model = model.unet
173
  vae_decoder_model = model.vae_decoder
174
- controlnet_model = model.controlnet
175
 
176
  # Device
177
  device = hub.Device("Samsung Galaxy S23")
178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
179
  # Trace model
180
  text_encoder_input_shape = text_encoder_model.get_input_spec()
181
  text_encoder_sample_inputs = text_encoder_model.sample_inputs()
@@ -221,21 +236,6 @@ vae_decoder_compile_job = hub.submit_compile_job(
221
 
222
  # Get target model to run on-device
223
  vae_decoder_target_model = vae_decoder_compile_job.get_target_model()
224
- # Trace model
225
- controlnet_input_shape = controlnet_model.get_input_spec()
226
- controlnet_sample_inputs = controlnet_model.sample_inputs()
227
-
228
- traced_controlnet_model = torch.jit.trace(controlnet_model, [torch.tensor(data[0]) for _, data in controlnet_sample_inputs.items()])
229
-
230
- # Compile model on a specific device
231
- controlnet_compile_job = hub.submit_compile_job(
232
- model=traced_controlnet_model ,
233
- device=device,
234
- input_specs=controlnet_model.get_input_spec(),
235
- )
236
-
237
- # Get target model to run on-device
238
- controlnet_target_model = controlnet_compile_job.get_target_model()
239
 
240
  ```
241
 
@@ -250,6 +250,10 @@ provided job URL to view a variety of on-device performance metrics.
250
 
251
  # Device
252
  device = hub.Device("Samsung Galaxy S23")
 
 
 
 
253
  profile_job_textencoder_quantized = hub.submit_profile_job(
254
  model=model_textencoder_quantized,
255
  device=device,
@@ -262,10 +266,6 @@ profile_job_vaedecoder_quantized = hub.submit_profile_job(
262
  model=model_vaedecoder_quantized,
263
  device=device,
264
  )
265
- profile_job_controlnet_quantized = hub.submit_profile_job(
266
- model=model_controlnet_quantized,
267
- device=device,
268
- )
269
 
270
  ```
271
 
@@ -275,6 +275,14 @@ To verify the accuracy of the model on-device, you can run on-device inference
275
  on sample input data on the same cloud hosted device.
276
  ```python
277
 
 
 
 
 
 
 
 
 
278
  input_data_textencoder_quantized = model.text_encoder.sample_inputs()
279
  inference_job_textencoder_quantized = hub.submit_inference_job(
280
  model=model_textencoder_quantized,
@@ -299,14 +307,6 @@ inference_job_vaedecoder_quantized = hub.submit_inference_job(
299
  )
300
  on_device_output_vaedecoder_quantized = inference_job_vaedecoder_quantized.download_output_data()
301
 
302
- input_data_controlnet_quantized = model.controlnet.sample_inputs()
303
- inference_job_controlnet_quantized = hub.submit_inference_job(
304
- model=model_controlnet_quantized,
305
- device=device,
306
- inputs=input_data_controlnet_quantized,
307
- )
308
- on_device_output_controlnet_quantized = inference_job_controlnet_quantized.download_output_data()
309
-
310
  ```
311
  With the output of the model, you can compute like PSNR, relative errors or
312
  spot check the output with expected output.
 
168
 
169
  # Load the model
170
  model = Model.from_pretrained()
171
+ controlnet_model = model.controlnet
172
  text_encoder_model = model.text_encoder
173
  unet_model = model.unet
174
  vae_decoder_model = model.vae_decoder
 
175
 
176
  # Device
177
  device = hub.Device("Samsung Galaxy S23")
178
 
179
+ # Trace model
180
+ controlnet_input_shape = controlnet_model.get_input_spec()
181
+ controlnet_sample_inputs = controlnet_model.sample_inputs()
182
+
183
+ traced_controlnet_model = torch.jit.trace(controlnet_model, [torch.tensor(data[0]) for _, data in controlnet_sample_inputs.items()])
184
+
185
+ # Compile model on a specific device
186
+ controlnet_compile_job = hub.submit_compile_job(
187
+ model=traced_controlnet_model ,
188
+ device=device,
189
+ input_specs=controlnet_model.get_input_spec(),
190
+ )
191
+
192
+ # Get target model to run on-device
193
+ controlnet_target_model = controlnet_compile_job.get_target_model()
194
  # Trace model
195
  text_encoder_input_shape = text_encoder_model.get_input_spec()
196
  text_encoder_sample_inputs = text_encoder_model.sample_inputs()
 
236
 
237
  # Get target model to run on-device
238
  vae_decoder_target_model = vae_decoder_compile_job.get_target_model()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
239
 
240
  ```
241
 
 
250
 
251
  # Device
252
  device = hub.Device("Samsung Galaxy S23")
253
+ profile_job_controlnet_quantized = hub.submit_profile_job(
254
+ model=model_controlnet_quantized,
255
+ device=device,
256
+ )
257
  profile_job_textencoder_quantized = hub.submit_profile_job(
258
  model=model_textencoder_quantized,
259
  device=device,
 
266
  model=model_vaedecoder_quantized,
267
  device=device,
268
  )
 
 
 
 
269
 
270
  ```
271
 
 
275
  on sample input data on the same cloud hosted device.
276
  ```python
277
 
278
+ input_data_controlnet_quantized = model.controlnet.sample_inputs()
279
+ inference_job_controlnet_quantized = hub.submit_inference_job(
280
+ model=model_controlnet_quantized,
281
+ device=device,
282
+ inputs=input_data_controlnet_quantized,
283
+ )
284
+ on_device_output_controlnet_quantized = inference_job_controlnet_quantized.download_output_data()
285
+
286
  input_data_textencoder_quantized = model.text_encoder.sample_inputs()
287
  inference_job_textencoder_quantized = hub.submit_inference_job(
288
  model=model_textencoder_quantized,
 
307
  )
308
  on_device_output_vaedecoder_quantized = inference_job_vaedecoder_quantized.download_output_data()
309
 
 
 
 
 
 
 
 
 
310
  ```
311
  With the output of the model, you can compute like PSNR, relative errors or
312
  spot check the output with expected output.