Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -155,9 +155,11 @@ This [export script](https://aihub.qualcomm.com/models/controlnet_quantized/qai_
|
|
155 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
156 |
on-device. Lets go through each step below in detail:
|
157 |
|
158 |
-
Step 1: **
|
|
|
|
|
|
|
159 |
|
160 |
-
Upload compiled models from `qai_hub_models.models.controlnet_quantized` on hub.
|
161 |
```python
|
162 |
import torch
|
163 |
|
@@ -165,12 +167,76 @@ import qai_hub as hub
|
|
165 |
from qai_hub_models.models.controlnet_quantized import Model
|
166 |
|
167 |
# Load the model
|
168 |
-
model = Model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
-
model_textencoder_quantized = hub.upload_model(model.text_encoder.get_target_model_path())
|
171 |
-
model_unet_quantized = hub.upload_model(model.unet.get_target_model_path())
|
172 |
-
model_vaedecoder_quantized = hub.upload_model(model.vae_decoder.get_target_model_path())
|
173 |
-
model_controlnet_quantized = hub.upload_model(model.controlnet.get_target_model_path())
|
174 |
```
|
175 |
|
176 |
|
|
|
155 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
156 |
on-device. Lets go through each step below in detail:
|
157 |
|
158 |
+
Step 1: **Compile model for on-device deployment**
|
159 |
+
|
160 |
+
To compile a PyTorch model for on-device deployment, we first trace the model
|
161 |
+
in memory using the `jit.trace` and then call the `submit_compile_job` API.
|
162 |
|
|
|
163 |
```python
|
164 |
import torch
|
165 |
|
|
|
167 |
from qai_hub_models.models.controlnet_quantized import Model
|
168 |
|
169 |
# Load the model
|
170 |
+
model = Model.from_pretrained()
|
171 |
+
text_encoder_model = model.text_encoder
|
172 |
+
unet_model = model.unet
|
173 |
+
vae_decoder_model = model.vae_decoder
|
174 |
+
controlnet_model = model.controlnet
|
175 |
+
|
176 |
+
# Device
|
177 |
+
device = hub.Device("Samsung Galaxy S23")
|
178 |
+
|
179 |
+
# Trace model
|
180 |
+
text_encoder_input_shape = text_encoder_model.get_input_spec()
|
181 |
+
text_encoder_sample_inputs = text_encoder_model.sample_inputs()
|
182 |
+
|
183 |
+
traced_text_encoder_model = torch.jit.trace(text_encoder_model, [torch.tensor(data[0]) for _, data in text_encoder_sample_inputs.items()])
|
184 |
+
|
185 |
+
# Compile model on a specific device
|
186 |
+
text_encoder_compile_job = hub.submit_compile_job(
|
187 |
+
model=traced_text_encoder_model ,
|
188 |
+
device=device,
|
189 |
+
input_specs=text_encoder_model.get_input_spec(),
|
190 |
+
)
|
191 |
+
|
192 |
+
# Get target model to run on-device
|
193 |
+
text_encoder_target_model = text_encoder_compile_job.get_target_model()
|
194 |
+
# Trace model
|
195 |
+
unet_input_shape = unet_model.get_input_spec()
|
196 |
+
unet_sample_inputs = unet_model.sample_inputs()
|
197 |
+
|
198 |
+
traced_unet_model = torch.jit.trace(unet_model, [torch.tensor(data[0]) for _, data in unet_sample_inputs.items()])
|
199 |
+
|
200 |
+
# Compile model on a specific device
|
201 |
+
unet_compile_job = hub.submit_compile_job(
|
202 |
+
model=traced_unet_model ,
|
203 |
+
device=device,
|
204 |
+
input_specs=unet_model.get_input_spec(),
|
205 |
+
)
|
206 |
+
|
207 |
+
# Get target model to run on-device
|
208 |
+
unet_target_model = unet_compile_job.get_target_model()
|
209 |
+
# Trace model
|
210 |
+
vae_decoder_input_shape = vae_decoder_model.get_input_spec()
|
211 |
+
vae_decoder_sample_inputs = vae_decoder_model.sample_inputs()
|
212 |
+
|
213 |
+
traced_vae_decoder_model = torch.jit.trace(vae_decoder_model, [torch.tensor(data[0]) for _, data in vae_decoder_sample_inputs.items()])
|
214 |
+
|
215 |
+
# Compile model on a specific device
|
216 |
+
vae_decoder_compile_job = hub.submit_compile_job(
|
217 |
+
model=traced_vae_decoder_model ,
|
218 |
+
device=device,
|
219 |
+
input_specs=vae_decoder_model.get_input_spec(),
|
220 |
+
)
|
221 |
+
|
222 |
+
# Get target model to run on-device
|
223 |
+
vae_decoder_target_model = vae_decoder_compile_job.get_target_model()
|
224 |
+
# Trace model
|
225 |
+
controlnet_input_shape = controlnet_model.get_input_spec()
|
226 |
+
controlnet_sample_inputs = controlnet_model.sample_inputs()
|
227 |
+
|
228 |
+
traced_controlnet_model = torch.jit.trace(controlnet_model, [torch.tensor(data[0]) for _, data in controlnet_sample_inputs.items()])
|
229 |
+
|
230 |
+
# Compile model on a specific device
|
231 |
+
controlnet_compile_job = hub.submit_compile_job(
|
232 |
+
model=traced_controlnet_model ,
|
233 |
+
device=device,
|
234 |
+
input_specs=controlnet_model.get_input_spec(),
|
235 |
+
)
|
236 |
+
|
237 |
+
# Get target model to run on-device
|
238 |
+
controlnet_target_model = controlnet_compile_job.get_target_model()
|
239 |
|
|
|
|
|
|
|
|
|
240 |
```
|
241 |
|
242 |
|