3D-Deep-BOX: Optimized for Mobile Deployment
Real-time 3D object detection
3D Deep Box is a machine learning model that predicts 3D bounding boxes and classes of objects in an image.
This model is an implementation of 3D-Deep-BOX found here.
This repository provides scripts to run 3D-Deep-BOX on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Object detection
- Model Stats:
- Model checkpoint: YOLOv3-tiny
- Input resolution(YOLO): 224x640
- Number of parameters(YOLO): 8.85M
- Model size(YOLO): 37.3 MB
- Input resolution(VGG): 224x224
- Number of parameters(VGG): 144M
- Model size(VGG): 175.9 MB
Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
Yolo | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 21.944 ms | 0 - 135 MB | FP16 | NPU | 3D-Deep-BOX.tflite |
Yolo | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 2.435 ms | 2 - 4 MB | FP16 | NPU | 3D-Deep-BOX.so |
Yolo | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 5.173 ms | 3 - 54 MB | FP16 | NPU | 3D-Deep-BOX.onnx |
Yolo | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 16.556 ms | 0 - 61 MB | FP16 | NPU | 3D-Deep-BOX.tflite |
Yolo | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 1.748 ms | 2 - 22 MB | FP16 | NPU | 3D-Deep-BOX.so |
Yolo | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 3.528 ms | 1 - 26 MB | FP16 | NPU | 3D-Deep-BOX.onnx |
Yolo | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 14.082 ms | 0 - 33 MB | FP16 | NPU | 3D-Deep-BOX.tflite |
Yolo | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 2.087 ms | 2 - 19 MB | FP16 | NPU | Use Export Script |
Yolo | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 4.32 ms | 2 - 15 MB | FP16 | NPU | 3D-Deep-BOX.onnx |
Yolo | SA7255P ADP | SA7255P | TFLITE | 67.784 ms | 0 - 29 MB | FP16 | NPU | 3D-Deep-BOX.tflite |
Yolo | SA7255P ADP | SA7255P | QNN | 34.599 ms | 2 - 11 MB | FP16 | NPU | Use Export Script |
Yolo | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 22.109 ms | 0 - 141 MB | FP16 | NPU | 3D-Deep-BOX.tflite |
Yolo | SA8255 (Proxy) | SA8255P Proxy | QNN | 2.436 ms | 2 - 4 MB | FP16 | NPU | Use Export Script |
Yolo | SA8295P ADP | SA8295P | TFLITE | 23.94 ms | 0 - 31 MB | FP16 | NPU | 3D-Deep-BOX.tflite |
Yolo | SA8295P ADP | SA8295P | QNN | 3.475 ms | 0 - 18 MB | FP16 | NPU | Use Export Script |
Yolo | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 21.84 ms | 0 - 140 MB | FP16 | NPU | 3D-Deep-BOX.tflite |
Yolo | SA8650 (Proxy) | SA8650P Proxy | QNN | 2.426 ms | 2 - 4 MB | FP16 | NPU | Use Export Script |
Yolo | SA8775P ADP | SA8775P | TFLITE | 27.669 ms | 0 - 29 MB | FP16 | NPU | 3D-Deep-BOX.tflite |
Yolo | SA8775P ADP | SA8775P | QNN | 3.837 ms | 2 - 11 MB | FP16 | NPU | Use Export Script |
Yolo | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 67.784 ms | 0 - 29 MB | FP16 | NPU | 3D-Deep-BOX.tflite |
Yolo | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 34.599 ms | 2 - 11 MB | FP16 | NPU | Use Export Script |
Yolo | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 21.809 ms | 0 - 136 MB | FP16 | NPU | 3D-Deep-BOX.tflite |
Yolo | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 2.44 ms | 2 - 5 MB | FP16 | NPU | Use Export Script |
Yolo | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 27.669 ms | 0 - 29 MB | FP16 | NPU | 3D-Deep-BOX.tflite |
Yolo | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 3.837 ms | 2 - 11 MB | FP16 | NPU | Use Export Script |
Yolo | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 22.505 ms | 0 - 60 MB | FP16 | NPU | 3D-Deep-BOX.tflite |
Yolo | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 3.531 ms | 2 - 22 MB | FP16 | NPU | Use Export Script |
Yolo | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 2.653 ms | 2 - 2 MB | FP16 | NPU | Use Export Script |
Yolo | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 5.558 ms | 11 - 11 MB | FP16 | NPU | 3D-Deep-BOX.onnx |
VGG | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 4.72 ms | 0 - 667 MB | FP16 | NPU | 3D-Deep-BOX.tflite |
VGG | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 4.775 ms | 1 - 2 MB | FP16 | NPU | 3D-Deep-BOX.so |
VGG | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 5.323 ms | 0 - 511 MB | FP16 | NPU | 3D-Deep-BOX.onnx |
VGG | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 3.572 ms | 0 - 125 MB | FP16 | NPU | 3D-Deep-BOX.tflite |
VGG | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 3.753 ms | 0 - 18 MB | FP16 | NPU | 3D-Deep-BOX.so |
VGG | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 4.057 ms | 0 - 82 MB | FP16 | NPU | 3D-Deep-BOX.onnx |
VGG | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 3.454 ms | 0 - 78 MB | FP16 | NPU | 3D-Deep-BOX.tflite |
VGG | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 3.427 ms | 1 - 76 MB | FP16 | NPU | Use Export Script |
VGG | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 3.811 ms | 1 - 75 MB | FP16 | NPU | 3D-Deep-BOX.onnx |
VGG | SA7255P ADP | SA7255P | TFLITE | 257.893 ms | 0 - 73 MB | FP16 | NPU | 3D-Deep-BOX.tflite |
VGG | SA7255P ADP | SA7255P | QNN | 257.859 ms | 1 - 10 MB | FP16 | NPU | Use Export Script |
VGG | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 4.721 ms | 0 - 669 MB | FP16 | NPU | 3D-Deep-BOX.tflite |
VGG | SA8255 (Proxy) | SA8255P Proxy | QNN | 4.801 ms | 1 - 3 MB | FP16 | NPU | Use Export Script |
VGG | SA8295P ADP | SA8295P | TFLITE | 9.753 ms | 0 - 76 MB | FP16 | NPU | 3D-Deep-BOX.tflite |
VGG | SA8295P ADP | SA8295P | QNN | 9.913 ms | 1 - 19 MB | FP16 | NPU | Use Export Script |
VGG | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 4.729 ms | 0 - 664 MB | FP16 | NPU | 3D-Deep-BOX.tflite |
VGG | SA8650 (Proxy) | SA8650P Proxy | QNN | 4.776 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
VGG | SA8775P ADP | SA8775P | TFLITE | 10.811 ms | 0 - 73 MB | FP16 | NPU | 3D-Deep-BOX.tflite |
VGG | SA8775P ADP | SA8775P | QNN | 10.713 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
VGG | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 257.893 ms | 0 - 73 MB | FP16 | NPU | 3D-Deep-BOX.tflite |
VGG | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 257.859 ms | 1 - 10 MB | FP16 | NPU | Use Export Script |
VGG | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 4.721 ms | 0 - 668 MB | FP16 | NPU | 3D-Deep-BOX.tflite |
VGG | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 4.772 ms | 1 - 4 MB | FP16 | NPU | Use Export Script |
VGG | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 10.811 ms | 0 - 73 MB | FP16 | NPU | 3D-Deep-BOX.tflite |
VGG | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 10.713 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
VGG | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 8.44 ms | 0 - 125 MB | FP16 | NPU | 3D-Deep-BOX.tflite |
VGG | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 8.649 ms | 1 - 83 MB | FP16 | NPU | Use Export Script |
VGG | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 5.023 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
VGG | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 5.251 ms | 89 - 89 MB | FP16 | NPU | 3D-Deep-BOX.onnx |
Installation
Install the package via pip:
pip install "qai-hub-models[deepbox]"
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.deepbox.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.deepbox.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.deepbox.export
Profiling Results
------------------------------------------------------------
Yolo
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 21.9
Estimated peak memory usage (MB): [0, 135]
Total # Ops : 128
Compute Unit(s) : NPU (128 ops)
------------------------------------------------------------
VGG
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 4.7
Estimated peak memory usage (MB): [0, 667]
Total # Ops : 40
Compute Unit(s) : NPU (40 ops)
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace
and then call the submit_compile_job
API.
import torch
import qai_hub as hub
from qai_hub_models.models.deepbox import Model
# Load the model
model = Model.from_pretrained()
bbox2D_dectector_model = model.bbox2D_dectector
bbox3D_dectector_model = model.bbox3D_dectector
# Device
device = hub.Device("Samsung Galaxy S23")
# Trace model
bbox2D_dectector_input_shape = bbox2D_dectector_model.get_input_spec()
bbox2D_dectector_sample_inputs = bbox2D_dectector_model.sample_inputs()
traced_bbox2D_dectector_model = torch.jit.trace(bbox2D_dectector_model, [torch.tensor(data[0]) for _, data in bbox2D_dectector_sample_inputs.items()])
# Compile model on a specific device
bbox2D_dectector_compile_job = hub.submit_compile_job(
model=traced_bbox2D_dectector_model ,
device=device,
input_specs=bbox2D_dectector_model.get_input_spec(),
)
# Get target model to run on-device
bbox2D_dectector_target_model = bbox2D_dectector_compile_job.get_target_model()
# Trace model
bbox3D_dectector_input_shape = bbox3D_dectector_model.get_input_spec()
bbox3D_dectector_sample_inputs = bbox3D_dectector_model.sample_inputs()
traced_bbox3D_dectector_model = torch.jit.trace(bbox3D_dectector_model, [torch.tensor(data[0]) for _, data in bbox3D_dectector_sample_inputs.items()])
# Compile model on a specific device
bbox3D_dectector_compile_job = hub.submit_compile_job(
model=traced_bbox3D_dectector_model ,
device=device,
input_specs=bbox3D_dectector_model.get_input_spec(),
)
# Get target model to run on-device
bbox3D_dectector_target_model = bbox3D_dectector_compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model
. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
bbox2D_dectector_profile_job = hub.submit_profile_job(
model=bbox2D_dectector_target_model,
device=device,
)
bbox3D_dectector_profile_job = hub.submit_profile_job(
model=bbox3D_dectector_target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
bbox2D_dectector_input_data = bbox2D_dectector_model.sample_inputs()
bbox2D_dectector_inference_job = hub.submit_inference_job(
model=bbox2D_dectector_target_model,
device=device,
inputs=bbox2D_dectector_input_data,
)
bbox2D_dectector_inference_job.download_output_data()
bbox3D_dectector_input_data = bbox3D_dectector_model.sample_inputs()
bbox3D_dectector_inference_job = hub.submit_inference_job(
model=bbox3D_dectector_target_model,
device=device,
inputs=bbox3D_dectector_input_data,
)
bbox3D_dectector_inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on 3D-Deep-BOX's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of 3D-Deep-BOX can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.