finbert-tone-chinese-finetuned-sentiment

This model is a fine-tuned version of yiyanghkust/finbert-tone-chinese on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2524
  • Accuracy: 0.6399
  • Matthews Correlation: 0.4352

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Matthews Correlation
1.0134 1.0 9044 1.0035 0.5918 0.3035
0.8984 2.0 18088 0.9505 0.6123 0.3471
0.77 3.0 27132 0.9348 0.6265 0.3735
0.6549 4.0 36176 0.9536 0.6281 0.3976
0.5588 5.0 45220 1.0170 0.6374 0.4332
0.472 6.0 54264 1.0852 0.6260 0.4124
0.412 7.0 63308 1.1077 0.6342 0.4284
0.3624 8.0 72352 1.2524 0.6399 0.4352
0.3182 9.0 81396 1.3556 0.6287 0.4215
0.3092 10.0 90440 1.4456 0.6264 0.4177

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
41
Safetensors
Model size
102M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for qinweijia/finbert-tone-chinese-finetuned-sentiment

Finetuned
(1)
this model