|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: roberta-finetuned-gesture-prediction-21-classes |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# roberta-finetuned-gesture-prediction-21-classes |
|
|
|
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9312 |
|
- Accuracy: 0.8163 |
|
- Precision: 0.8090 |
|
- Recall: 0.8163 |
|
- F1: 0.8108 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 2.2472 | 1.0 | 104 | 1.4263 | 0.7364 | 0.6666 | 0.7364 | 0.6921 | |
|
| 1.2677 | 2.0 | 208 | 1.0547 | 0.7888 | 0.7581 | 0.7888 | 0.7638 | |
|
| 0.8676 | 3.0 | 312 | 0.9315 | 0.7963 | 0.7775 | 0.7963 | 0.7791 | |
|
| 0.6407 | 4.0 | 416 | 0.9022 | 0.8102 | 0.8012 | 0.8102 | 0.7995 | |
|
| 0.4926 | 5.0 | 520 | 0.8994 | 0.8120 | 0.8080 | 0.8120 | 0.8016 | |
|
| 0.3754 | 6.0 | 624 | 0.9018 | 0.8069 | 0.7999 | 0.8069 | 0.8002 | |
|
| 0.3037 | 7.0 | 728 | 0.9048 | 0.8131 | 0.8055 | 0.8131 | 0.8060 | |
|
| 0.2499 | 8.0 | 832 | 0.9030 | 0.8161 | 0.8119 | 0.8161 | 0.8117 | |
|
| 0.2155 | 9.0 | 936 | 0.9279 | 0.8160 | 0.8088 | 0.8160 | 0.8106 | |
|
| 0.2062 | 10.0 | 1040 | 0.9312 | 0.8163 | 0.8090 | 0.8163 | 0.8108 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.13.2 |
|
|