|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:132020 |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: pyrac/rse_gestion_durable |
|
widget: |
|
- source_sentence: Les chemins extérieurs n'avaient pas de garde-corps pour sécuriser |
|
les déplacements. |
|
sentences: |
|
- Les mesures d'accessibilité pour les personnes handicapées sont bien respectées |
|
dans l'établissement |
|
- Cette chambre nous a vraiment déçus, rien n’était comme on l’espérait. |
|
- L'absence de barres d'appui rend cet hôtel moins pratique pour les personnes en |
|
situation de handicap |
|
- source_sentence: Les rampes étaient inclinées de façon inconfortable, limitant leur |
|
accessibilité. |
|
sentences: |
|
- La chambre PMR n’était pas adaptée à notre confort, on en est ressortis frustrés. |
|
- Les ascenseurs de l'hôtel sont trop petits pour un fauteuil roulant ce qui complique |
|
les déplacements |
|
- La sécurité est assurée avec un gardien présent. |
|
- source_sentence: L'absence d'indication en braille était regrettable. |
|
sentences: |
|
- Parking sécurisé avec gardien. |
|
- Il est difficile de trouver un restaurant accessible aux fauteuils roulants dans |
|
cette ville car beaucoup d'entre eux ont des escaliers |
|
- difficiles à parcourir en fauteuil roulant. |
|
- source_sentence: Il n'y avait aucun plan en braille pour les visiteurs malvoyants. |
|
sentences: |
|
- Bon rapport qualité-prix pour le stationnement. |
|
- Aucune signalétique tactile n'était présente dans les espaces communs. |
|
- Le théâtre est mal conçu pour les fauteuils roulants et il est difficile de trouver |
|
des places adaptées |
|
- source_sentence: L'absence de cheminement accessible a rendu la visite difficile |
|
pour ma famille. |
|
sentences: |
|
- Le lavabo était trop haut, ce qui le rendait inutilisable pour les personnes en |
|
fauteuil roulant. |
|
- Ce n’était pas du tout ce qu’on voulait, cette chambre a gâché notre séjour. |
|
- L'hôtel n'offre pas assez de chambres adaptées aux fauteuils roulants et il est |
|
difficile de réserver à la dernière minute |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy |
|
model-index: |
|
- name: MPNet base trained on AllNLI triplets |
|
results: |
|
- task: |
|
type: triplet |
|
name: Triplet |
|
dataset: |
|
name: all nli dev |
|
type: all-nli-dev |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 1.0 |
|
name: Cosine Accuracy |
|
- task: |
|
type: triplet |
|
name: Triplet |
|
dataset: |
|
name: all nli test |
|
type: all-nli-test |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 1.0 |
|
name: Cosine Accuracy |
|
--- |
|
|
|
# MPNet base trained on AllNLI triplets |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [pyrac/rse_gestion_durable](https://huggingface.co/pyrac/rse_gestion_durable). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [pyrac/rse_gestion_durable](https://huggingface.co/pyrac/rse_gestion_durable) <!-- at revision fc41501961df3b7a70af7a014df8e12349918dcf --> |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("pyrac/rse_handicap") |
|
# Run inference |
|
sentences = [ |
|
"L'absence de cheminement accessible a rendu la visite difficile pour ma famille.", |
|
"L'hôtel n'offre pas assez de chambres adaptées aux fauteuils roulants et il est difficile de réserver à la dernière minute", |
|
'Ce n’était pas du tout ce qu’on voulait, cette chambre a gâché notre séjour.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Triplet |
|
|
|
* Datasets: `all-nli-dev` and `all-nli-test` |
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | all-nli-dev | all-nli-test | |
|
|:--------------------|:------------|:-------------| |
|
| **cosine_accuracy** | **1.0** | **1.0** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 132,020 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 20.24 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 23.96 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 19.23 tokens</li><li>max: 31 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:----------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------| |
|
| <code>Les panneaux d'indication manquaient de braille, ce qui pénalisait les malvoyants.</code> | <code>Hôtel bien situé et accessible mais l'absence de barres d'appui est un vrai point négatif</code> | <code>On a eu une chambre mal entretenue, rien ne fonctionnait comme il fallait.</code> | |
|
| <code>Le cheminement extérieur n'était pas praticable pour les fauteuils roulants électriques.</code> | <code>Aucun confort dans cette chambre PMR, elle n'était absolument pas adaptée à nos besoins.</code> | <code>On a eu une chambre trop bruyante, c’était vraiment une mauvaise expérience.</code> | |
|
| <code>Il n'y avait pas de signalisation concernant l'accessibilité pour les personnes à mobilité réduite</code> | <code>La chambre adaptée aux fauteuils roulants est spacieuse et permet de circuler sans aucune difficulté</code> | <code>Se retrouver dans cette chambre sans avoir rien demandé, ça a vraiment gâché notre séjour.</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 16,502 evaluation samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 20.06 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 24.09 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.96 tokens</li><li>max: 31 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------| |
|
| <code>Le cheminement accessible était interrompu par des obstacles imprévus.</code> | <code>étaient inaccessibles depuis un fauteuil roulant.</code> | <code>On n’a pas du tout aimé la chambre, l’équipement était dépassé et inconfortable.</code> | |
|
| <code>était bien adapté pour les fauteuils roulants.</code> | <code>On a été choqués de nous retrouver dans une chambre accessible pour handicapé, c’était inconfortable.</code> | <code>Cette chambre était en tout point décevante, ça ne correspondait pas du tout à ce qu’on avait espéré.</code> | |
|
| <code>Leur sensibilisation sur le handicap auditif semblaient insuffisantes.</code> | <code>Le cheminement était bien signalé avec des panneaux visuels et tactiles.</code> | <code>On s’est retrouvés dans une chambre qu’on n’avait pas demandée, ça nous a déstabilisés.</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | Validation Loss | all-nli-dev_cosine_accuracy | all-nli-test_cosine_accuracy | |
|
|:------:|:----:|:-------------:|:---------------:|:---------------------------:|:----------------------------:| |
|
| 0.0485 | 100 | 4.6964 | 4.0874 | 1.0 | - | |
|
| 0.0969 | 200 | 4.1044 | 4.0497 | 1.0 | - | |
|
| 0.1454 | 300 | 4.0817 | 4.0305 | 1.0 | - | |
|
| 0.1939 | 400 | 4.0734 | 4.0310 | 1.0 | - | |
|
| 0.2424 | 500 | 4.0587 | 4.0209 | 1.0 | - | |
|
| 0.2908 | 600 | 4.0625 | 4.0180 | 1.0 | - | |
|
| 0.3393 | 700 | 4.053 | 4.0201 | 1.0 | - | |
|
| 0.3878 | 800 | 4.0607 | 4.0116 | 1.0 | - | |
|
| 0.4363 | 900 | 4.0511 | 4.0078 | 1.0 | - | |
|
| 0.4847 | 1000 | 4.0433 | 4.0087 | 1.0 | - | |
|
| 0.5332 | 1100 | 4.0385 | 4.0080 | 1.0 | - | |
|
| 0.5817 | 1200 | 4.0413 | 4.0055 | 1.0 | - | |
|
| 0.6302 | 1300 | 4.044 | 4.0016 | 1.0 | - | |
|
| 0.6786 | 1400 | 4.0385 | 4.0010 | 1.0 | - | |
|
| 0.7271 | 1500 | 4.037 | 3.9974 | 1.0 | - | |
|
| 0.7756 | 1600 | 4.0364 | 3.9965 | 1.0 | - | |
|
| 0.8240 | 1700 | 4.0337 | 3.9988 | 1.0 | - | |
|
| 0.8725 | 1800 | 4.0362 | 3.9965 | 1.0 | - | |
|
| 0.9210 | 1900 | 4.0293 | 3.9964 | 1.0 | - | |
|
| 0.9695 | 2000 | 4.0317 | 3.9947 | 1.0 | - | |
|
| -1 | -1 | - | - | - | 1.0 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.12.3 |
|
- Sentence Transformers: 3.4.1 |
|
- Transformers: 4.48.3 |
|
- PyTorch: 2.6.0+cu124 |
|
- Accelerate: 1.3.0 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |