See axolotl config
axolotl version: 0.7.0
base_model: meta-llama/Llama-3.2-3B
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: ptllama/acemath_test
type: completion
# pretraining_dataset:
# - name:
# path: ptllama/acemath_test
# split:
# text_column: text # column in dataset with the data, usually `text`
# type: pretrain
# trust_remote_code:
# skip: # number of rows of data to skip over from the beginning
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./outputs/out
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
wandb_project: axolotl-pretraining
wandb_entity:
wandb_watch:
wandb_name: test-2e4
wandb_log_model:
gradient_accumulation_steps: 16
micro_batch_size: 4
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-4
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.01
cosine_min_lr_ratio: 0.1
cosine_constant_lr_ratio: 0.9
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
outputs/out
This model is a fine-tuned version of meta-llama/Llama-3.2-3B on the ptllama/acemath_test dataset. It achieves the following results on the evaluation set:
- Loss: 0.2855
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 16
- total_train_batch_size: 512
- total_eval_batch_size: 32
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 17
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.1349 | 0.0006 | 1 | 1.2094 |
0.2805 | 0.5002 | 893 | 0.2855 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.4.0
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for ptllama/llama3b-2e4-2m-test
Base model
meta-llama/Llama-3.2-3B