metadata
tags:
- summarization
- summary
- booksum
- long-document
- long-form
license:
- apache-2.0
- bsd-3-clause
datasets:
- kmfoda/booksum
metrics:
- rouge
inference: false
model-index:
- name: pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP14
results:
- task:
type: summarization
name: Summarization
dataset:
name: samsum
type: samsum
config: samsum
split: test
metrics:
- name: ROUGE-1
type: rouge
value: 23.5177
verified: true
- name: ROUGE-2
type: rouge
value: 4.668
verified: true
- name: ROUGE-L
type: rouge
value: 16.6091
verified: true
- name: ROUGE-LSUM
type: rouge
value: 20.3174
verified: true
- name: loss
type: loss
value: 3.2174887657165527
verified: true
- name: gen_len
type: gen_len
value: 57.1966
verified: true
long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP14
This model is a fine-tuned version of pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP13 on the kmfoda/booksum dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 4
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 2
Framework versions
- Transformers 4.22.0
- Pytorch 1.12.1
- Datasets 2.4.0
- Tokenizers 0.12.1