Llama-3-6.3b-v0.1
This is a layer pruning experiment based off of the original llama-3-8b:
- 8 layers pruned with PruneMe/MergeKit
- layers selected using BEE-spoke-data/fineweb-100k_en-med
- brief subsequent continued pretraining @ ctx 4096
- data: 10k rows of FineWeb (different than pruning data) + some curated data
- wandb here
quick eval
hf (pretrained=pszemraj/Llama-3-6.3b-v0.1,trust_remote_code=True,dtype=bfloat16), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 1
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |
---|---|---|---|---|---|---|---|
arc_easy | 1 | none | 0 | acc | 0.7109 | ± | 0.0093 |
none | 0 | acc_norm | 0.6843 | ± | 0.0095 | ||
boolq | 2 | none | 0 | acc | 0.7920 | ± | 0.0071 |
lambada_openai | 1 | none | 0 | perplexity | 4.5411 | ± | 0.1073 |
none | 0 | acc | 0.6734 | ± | 0.0065 | ||
openbookqa | 1 | none | 0 | acc | 0.3000 | ± | 0.0205 |
none | 0 | acc_norm | 0.4140 | ± | 0.0220 | ||
piqa | 1 | none | 0 | acc | 0.7443 | ± | 0.0102 |
none | 0 | acc_norm | 0.7530 | ± | 0.0101 | ||
winogrande | 1 | none | 0 | acc | 0.7127 | ± | 0.0127 |
Details
See axolotl config
axolotl version: 0.4.0
base_model: pszemraj/llama-3-prune_8
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
strict: false
seed: 80085
# dataset
datasets:
- path: BEE-spoke-data/KI-smorgasbord_fw-small
type: completion # format from earlier
field: text # Optional[str] default: text, field to use for completion data
val_set_size: 0.015
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: false
train_on_inputs: false
group_by_length: false
# WANDB
wandb_project: llama3-pruning
wandb_entity: pszemraj
wandb_watch: gradients
wandb_name: Llama-3-6.3b-v0.1
hub_model_id: pszemraj/Llama-3-6.3b-v0.1
hub_strategy: every_save
gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch_fused # paged_adamw_32bit
weight_decay: 0.05
lr_scheduler: cosine
learning_rate: 4e-5
warmup_ratio: 0.1
load_in_8bit: false
load_in_4bit: false
bfloat16: true
tf32: true
flash_attention: true
torch_compile: true # requires >= torch 2.0, may sometimes cause problems
torch_compile_backend: inductor # Optional[str]
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
# hyperparams for freq of evals, saving, etc
evals_per_epoch: 5
saves_per_epoch: 3
save_safetensors: true
save_total_limit: 1
output_dir: ./output-axolotl/output-model-6.3b
logging_steps: 8
deepspeed:
special_tokens:
pad_token: <|end_of_text|>
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0006 | 1 | 7.8100 |
2.2782 | 0.2002 | 320 | 2.3728 |
2.2699 | 0.4004 | 640 | 2.3265 |
2.3761 | 0.6006 | 960 | 2.2849 |
2.2448 | 0.8008 | 1280 | 2.2702 |
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 10.28 |
IFEval (0-Shot) | 10.44 |
BBH (3-Shot) | 18.68 |
MATH Lvl 5 (4-Shot) | 1.51 |
GPQA (0-shot) | 4.47 |
MuSR (0-shot) | 6.15 |
MMLU-PRO (5-shot) | 20.44 |
- Downloads last month
- 16
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for pszemraj/Llama-3-6.3b-v0.1
Base model
meta-llama/Meta-Llama-3-8BEvaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard10.440
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard18.680
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard1.510
- acc_norm on GPQA (0-shot)Open LLM Leaderboard4.470
- acc_norm on MuSR (0-shot)Open LLM Leaderboard6.150
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard20.440