|
|
|
--- |
|
tags: |
|
- bertopic |
|
library_name: bertopic |
|
pipeline_tag: text-classification |
|
--- |
|
|
|
# rag-topic-model |
|
|
|
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. |
|
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. |
|
|
|
## Usage |
|
|
|
To use this model, please install BERTopic: |
|
|
|
``` |
|
pip install -U bertopic |
|
``` |
|
|
|
You can use the model as follows: |
|
|
|
```python |
|
from bertopic import BERTopic |
|
topic_model = BERTopic.load("przadka/rag-topic-model") |
|
|
|
topic_model.get_topic_info() |
|
``` |
|
|
|
## Topic overview |
|
|
|
* Number of topics: 4 |
|
* Number of training documents: 203 |
|
|
|
<details> |
|
<summary>Click here for an overview of all topics.</summary> |
|
|
|
| Topic ID | Topic Keywords | Topic Frequency | Label | |
|
|----------|----------------|-----------------|-------| |
|
| -1 | on - card - my - charge - account | 54 | -1_on_card_my_charge | |
|
| 0 | refund - my - nike - for - store | 16 | 0_refund_my_nike_for | |
|
| 1 | to - my - klarna - email - and | 77 | 1_to_my_klarna_email | |
|
| 2 | my - the - payment - klarna - for | 56 | 2_my_the_payment_klarna | |
|
|
|
</details> |
|
|
|
## Training hyperparameters |
|
|
|
* calculate_probabilities: False |
|
* language: None |
|
* low_memory: False |
|
* min_topic_size: 10 |
|
* n_gram_range: (1, 1) |
|
* nr_topics: None |
|
* seed_topic_list: None |
|
* top_n_words: 10 |
|
* verbose: False |
|
* zeroshot_min_similarity: 0.7 |
|
* zeroshot_topic_list: None |
|
|
|
## Framework versions |
|
|
|
* Numpy: 2.1.3 |
|
* HDBSCAN: 0.8.40 |
|
* UMAP: 0.5.7 |
|
* Pandas: 2.2.3 |
|
* Scikit-Learn: 1.6.1 |
|
* Sentence-transformers: 3.1.1 |
|
* Transformers: 4.45.2 |
|
* Numba: 0.61.0 |
|
* Plotly: 6.0.0 |
|
* Python: 3.10.12 |
|
|