|
--- |
|
|
|
language: |
|
|
|
- ca |
|
|
|
license: apache-2.0 |
|
|
|
tags: |
|
|
|
- "catalan" |
|
|
|
- "textual entailment" |
|
|
|
- "teca" |
|
|
|
- "CaText" |
|
|
|
- "Catalan Textual Corpus" |
|
|
|
datasets: |
|
|
|
- "projecte-aina/teca" |
|
|
|
metrics: |
|
|
|
- "accuracy" |
|
|
|
|
|
model-index: |
|
- name: roberta-base-ca-v2-cased-te |
|
results: |
|
- task: |
|
type: text-classification |
|
dataset: |
|
type: projecte-aina/teca |
|
name: TECA |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8342 |
|
|
|
widget: |
|
|
|
- text: "M'agrades. T'estimo." |
|
|
|
- text: "M'agrada el sol i la calor. A la Garrotxa plou molt." |
|
|
|
- text: "El llibre va caure per la finestra. El llibre va sortir volant." |
|
|
|
- text: "El meu aniversari és el 23 de maig. Faré anys a finals de maig." |
|
|
|
--- |
|
|
|
# Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for Textual Entailment. |
|
|
|
## Table of Contents |
|
- [Model Description](#model-description) |
|
- [Intended Uses and Limitations](#intended-uses-and-limitations) |
|
- [How to Use](#how-to-use) |
|
- [Training](#training) |
|
- [Training Data](#training-data) |
|
- [Training Procedure](#training-procedure) |
|
- [Evaluation](#evaluation) |
|
- [Variable and Metrics](#variable-and-metrics) |
|
- [Evaluation Results](#evaluation-results) |
|
- [Licensing Information](#licensing-information) |
|
- [Citation Information](#citation-information) |
|
- [Funding](#funding) |
|
- [Contributions](#contributions) |
|
|
|
## Model description |
|
|
|
The **roberta-base-ca-v2-cased-te** is a Textual Entailment (TE) model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details). |
|
|
|
## Intended Uses and Limitations |
|
|
|
**roberta-base-ca-v2-cased-te** model can be used to recognize Textual Entailment (TE). The model is limited by its training dataset and may not generalize well for all use cases. |
|
|
|
## How to Use |
|
|
|
Here is how to use this model: |
|
|
|
```python |
|
from transformers import pipeline |
|
from pprint import pprint |
|
|
|
nlp = pipeline("text-classification", model="projecte-aina/roberta-base-ca-v2-cased-te") |
|
example = "M'agrada el sol i la calor. </s></s> A la Garrotxa plou molt." |
|
|
|
te_results = nlp(example) |
|
pprint(te_results) |
|
``` |
|
|
|
## Training |
|
|
|
### Training data |
|
We used the TE dataset in Catalan called [TECA](https://huggingface.co/datasets/projecte-aina/teca) for training and evaluation. |
|
|
|
### Training Procedure |
|
The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set. |
|
|
|
## Evaluation |
|
|
|
### Variable and Metrics |
|
|
|
This model was finetuned maximizing accuracy. |
|
|
|
## Evaluation results |
|
We evaluated the roberta-base-ca-cased-te on the TECA test set against standard multilingual and monolingual baselines: |
|
|
|
| Model | TECA (Accuracy) | |
|
| ------------|:----| |
|
| roberta-base-ca-v2-cased-te | **83.14** | |
|
| BERTa | 79.26 | |
|
| mBERT | 74.63 | |
|
| XLM-RoBERTa | 33.30 | |
|
|
|
For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club). |
|
|
|
|
|
## Licensing Information |
|
|
|
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) |
|
|
|
## Citation Information |
|
If you use any of these resources (datasets or models) in your work, please cite our latest paper: |
|
```bibtex |
|
@inproceedings{armengol-estape-etal-2021-multilingual, |
|
title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan", |
|
author = "Armengol-Estap{\'e}, Jordi and |
|
Carrino, Casimiro Pio and |
|
Rodriguez-Penagos, Carlos and |
|
de Gibert Bonet, Ona and |
|
Armentano-Oller, Carme and |
|
Gonzalez-Agirre, Aitor and |
|
Melero, Maite and |
|
Villegas, Marta", |
|
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", |
|
month = aug, |
|
year = "2021", |
|
address = "Online", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2021.findings-acl.437", |
|
doi = "10.18653/v1/2021.findings-acl.437", |
|
pages = "4933--4946", |
|
} |
|
``` |
|
|
|
### Funding |
|
This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/en/inici/index.html) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina). |
|
|
|
|
|
## Contributions |
|
|
|
[N/A] |
|
|