swinv2-tiny-patch4-window8-256-finetuned_swinv2tiny-autotags-256

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1115
  • Accuracy: 0.9655

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6169 0.99 61 1.1018 0.6701
0.7747 1.99 122 0.4571 0.8670
0.6088 2.99 183 0.3002 0.9198
0.3908 3.99 244 0.2334 0.9299
0.399 4.99 305 0.2138 0.9320
0.2969 5.99 366 0.1650 0.9492
0.2743 6.99 427 0.1514 0.9533
0.2947 7.99 488 0.1428 0.9513
0.2304 8.99 549 0.1541 0.9523
0.1957 9.99 610 0.1256 0.9604
0.1645 10.99 671 0.1138 0.9645
0.2317 11.99 732 0.1140 0.9655
0.1001 12.99 793 0.1068 0.9706
0.1564 13.99 854 0.1119 0.9675
0.1386 14.99 915 0.1115 0.9655

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.10.2+cu113
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
50
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Evaluation results