|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
base_model: |
|
- google/siglip2-base-patch16-224 |
|
pipeline_tag: image-classification |
|
library_name: transformers |
|
tags: |
|
- gym |
|
- workout |
|
- classifier |
|
--- |
|
 |
|
|
|
# **Gym-Workout-Classifier-SigLIP2** |
|
|
|
> **Gym-Workout-Classifier-SigLIP2** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify gym workout exercises using the **SiglipForImageClassification** architecture. |
|
|
|
```py |
|
Classification Report: |
|
precision recall f1-score support |
|
|
|
barbell biceps curl 0.9613 0.9574 0.9593 493 |
|
bench press 0.9402 0.9359 0.9381 437 |
|
chest fly machine 0.9694 0.9484 0.9588 368 |
|
deadlift 0.9833 0.9542 0.9685 371 |
|
decline bench press 0.9884 0.9499 0.9688 359 |
|
hammer curl 0.9917 0.9398 0.9651 382 |
|
hip thrust 0.9692 0.9717 0.9705 389 |
|
incline bench press 0.9297 0.9588 0.9440 510 |
|
lat pulldown 0.9607 0.9735 0.9670 452 |
|
lateral raises 0.9539 0.9814 0.9674 590 |
|
leg extension 0.9573 0.9854 0.9712 410 |
|
leg raises 0.9939 0.9109 0.9506 359 |
|
plank 0.9828 0.9856 0.9842 695 |
|
pull up 0.9882 0.9744 0.9813 430 |
|
push up 0.9382 0.9762 0.9568 420 |
|
romanian deadlift 0.9617 0.9716 0.9667 388 |
|
russian twist 0.8702 0.9918 0.9270 365 |
|
shoulder press 0.9499 0.9525 0.9512 358 |
|
squat 0.9761 0.9441 0.9598 519 |
|
t bar row 0.9806 0.9743 0.9774 467 |
|
tricep dips 0.9834 0.9713 0.9773 488 |
|
tricep pushdown 0.9837 0.9657 0.9746 437 |
|
|
|
accuracy 0.9638 9687 |
|
macro avg 0.9643 0.9625 0.9630 9687 |
|
weighted avg 0.9647 0.9638 0.9639 9687 |
|
``` |
|
|
|
 |
|
|
|
The model categorizes images into 22 workout classes: |
|
- **Class 0:** "barbell biceps curl" |
|
- **Class 1:** "bench press" |
|
- **Class 2:** "chest fly machine" |
|
- **Class 3:** "deadlift" |
|
- **Class 4:** "decline bench press" |
|
- **Class 5:** "hammer curl" |
|
- **Class 6:** "hip thrust" |
|
- **Class 7:** "incline bench press" |
|
- **Class 8:** "lat pulldown" |
|
- **Class 9:** "lateral raises" |
|
- **Class 10:** "leg extension" |
|
- **Class 11:** "leg raises" |
|
- **Class 12:** "plank" |
|
- **Class 13:** "pull up" |
|
- **Class 14:** "push up" |
|
- **Class 15:** "romanian deadlift" |
|
- **Class 16:** "russian twist" |
|
- **Class 17:** "shoulder press" |
|
- **Class 18:** "squat" |
|
- **Class 19:** "t bar row" |
|
- **Class 20:** "tricep dips" |
|
- **Class 21:** "tricep pushdown" |
|
|
|
# **Run with Transformers🤗** |
|
|
|
```python |
|
!pip install -q transformers torch pillow gradio |
|
``` |
|
|
|
```python |
|
import gradio as gr |
|
from transformers import AutoImageProcessor |
|
from transformers import SiglipForImageClassification |
|
from transformers.image_utils import load_image |
|
from PIL import Image |
|
import torch |
|
|
|
# Load model and processor |
|
model_name = "prithivMLmods/Gym-Workout-Classifier-SigLIP2" |
|
model = SiglipForImageClassification.from_pretrained(model_name) |
|
processor = AutoImageProcessor.from_pretrained(model_name) |
|
|
|
def workout_classification(image): |
|
"""Predicts workout exercise classification for an image.""" |
|
image = Image.fromarray(image).convert("RGB") |
|
inputs = processor(images=image, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() |
|
|
|
labels = { |
|
"0": "barbell biceps curl", "1": "bench press", "2": "chest fly machine", "3": "deadlift", |
|
"4": "decline bench press", "5": "hammer curl", "6": "hip thrust", "7": "incline bench press", |
|
"8": "lat pulldown", "9": "lateral raises", "10": "leg extension", "11": "leg raises", |
|
"12": "plank", "13": "pull up", "14": "push up", "15": "romanian deadlift", |
|
"16": "russian twist", "17": "shoulder press", "18": "squat", "19": "t bar row", |
|
"20": "tricep dips", "21": "tricep pushdown" |
|
} |
|
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} |
|
|
|
return predictions |
|
|
|
# Create Gradio interface |
|
iface = gr.Interface( |
|
fn=workout_classification, |
|
inputs=gr.Image(type="numpy"), |
|
outputs=gr.Label(label="Prediction Scores"), |
|
title="Gym Workout Classification", |
|
description="Upload an image to classify the workout exercise." |
|
) |
|
|
|
# Launch the app |
|
if __name__ == "__main__": |
|
iface.launch() |
|
``` |
|
|
|
# **Intended Use:** |
|
|
|
The **Gym-Workout-Classifier-SigLIP2** model is designed to classify different gym exercises based on images. Potential use cases include: |
|
|
|
- **Workout Tracking:** Identifying exercises performed during a workout session. |
|
- **Personal Training Assistance:** Helping trainers analyze and correct exercise form. |
|
- **Gym Activity Monitoring:** Automating exercise logging and analysis in fitness apps. |
|
- **AI-Powered Fitness Coaching:** Supporting AI-based fitness programs with real-time workout recognition. |