vivit-b-16x2-kinetics400-UCF-Crime

This model is a fine-tuned version of google/vivit-b-16x2-kinetics400 on UCF-Crime dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9757
  • Accuracy: 0.6149

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 3132

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2072 0.06 196 1.6400 0.5518
1.5513 1.06 392 1.4988 0.5634
1.1038 2.06 588 1.5328 0.5861
0.9462 3.06 784 1.3932 0.6178
0.7387 4.06 980 1.5449 0.6060
0.5085 5.06 1176 1.3075 0.6287
0.4443 6.06 1372 1.6743 0.6001
0.4695 7.06 1568 1.5287 0.6172
0.4409 8.06 1764 1.7749 0.6089
0.1158 9.06 1960 1.9027 0.6076
0.1183 10.06 2156 1.9622 0.6085
0.1322 11.06 2352 2.0872 0.6152
0.1881 12.06 2548 2.0095 0.6094
0.0932 13.06 2744 1.9398 0.6232
0.0303 14.06 2940 1.9994 0.6134
0.0513 15.06 3132 1.9757 0.6149

Framework versions

  • Transformers 4.33.2
  • Pytorch 1.10.0+cu113
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
170
Safetensors
Model size
88.7M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for prathameshdalal/vivit-b-16x2-kinetics400-UCF-Crime

Finetuned
(55)
this model
Finetunes
1 model