llma-finetuned-ner / README.md
pnr-svc's picture
Training complete
5b0567e verified
---
library_name: transformers
base_model: afmck/testing-llama-tiny
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: llma-finetuned-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llma-finetuned-ner
This model is a fine-tuned version of [afmck/testing-llama-tiny](https://huggingface.co/afmck/testing-llama-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1003
- Precision: 0.9755
- Recall: 0.9764
- F1: 0.9759
- Accuracy: 0.9815
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0726 | 1.0 | 5285 | 0.1305 | 0.9820 | 0.9672 | 0.9745 | 0.9749 |
| 0.0558 | 2.0 | 10570 | 0.1090 | 0.9733 | 0.9740 | 0.9737 | 0.9796 |
| 0.07 | 3.0 | 15855 | 0.1003 | 0.9755 | 0.9764 | 0.9759 | 0.9815 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1