|
---
|
|
tags:
|
|
- sentence-transformers
|
|
- sentence-similarity
|
|
- feature-extraction
|
|
- generated_from_trainer
|
|
- dataset_size:10501
|
|
- loss:CosineSimilarityLoss
|
|
base_model: klue/roberta-base
|
|
widget:
|
|
- source_sentence: 아침마다 제가 원하는 시간에 맛있는 조식도 먹을 수 있었어요.
|
|
sentences:
|
|
- 매일 아침 내가 원하는 시간에 맛있는 아침식사를 먹을 수 있었습니다.
|
|
- 태풍과 폭염 중 어떤 것이 올까요?
|
|
- 떼르미니 역에서 5분 이내고 주변에 마트 식당 빵집 등등 편의시설도 가득합니다.
|
|
- source_sentence: 아무리 우수한 방역체계도 신뢰 없이는 작동하기 어렵습니다.
|
|
sentences:
|
|
- 좋은 위치와 좋은 숙소와 좋은 호스트가 있습니다.
|
|
- 위치도 룸도 모든 기 완벽한 곳이었다!
|
|
- 콜센터 시설 내외부 방역도 철저히 실시하기로 했다.
|
|
- source_sentence: 굳이 모든 메일을 다 가지고 있을 필요는 없어. 중요하지 않은 학회 홍보 메일은 지워도 돼.
|
|
sentences:
|
|
- 바르셀로나에 가실 거면 시내에 안 계셔도 된다면 이 숙소를 추천해 드릴게요!
|
|
- 학교에서 온 메일 말고 학회 홍보메일만 삭제해줘
|
|
- 사그라다 파밀리아까지는 걸어서 10분거리구요.
|
|
- source_sentence: 더운물로 세탁하자.
|
|
sentences:
|
|
- 네가 시간 떼울 때 보고싶은 오락 프로그램 이름 알려주면 찾아볼께
|
|
- 장인어른과의 약속에 정시에 가지 말고 일찍 나오세요.
|
|
- 안방 취침등 또는 형광등은 어떻게 켜?
|
|
- source_sentence: 또한 숙소는 청결하고 아늑한 장소입니다.
|
|
sentences:
|
|
- 또한, 숙소는 깨끗하고 아늑한 곳입니다.
|
|
- 깜빡하고 백화점 세일 일정 잊어버리면 안된다.
|
|
- 전체적으로 집 내부가 너무 예뻤어요.
|
|
pipeline_tag: sentence-similarity
|
|
library_name: sentence-transformers
|
|
metrics:
|
|
- pearson_cosine
|
|
- spearman_cosine
|
|
co2_eq_emissions:
|
|
emissions: 6.29574616666927
|
|
energy_consumed: 0.014386922744112848
|
|
source: codecarbon
|
|
training_type: fine-tuning
|
|
on_cloud: false
|
|
cpu_model: Intel(R) Core(TM) i7-14700KF
|
|
ram_total_size: 63.83439254760742
|
|
hours_used: 0.044
|
|
hardware_used: 1 x NVIDIA GeForce RTX 4090
|
|
model-index:
|
|
- name: SentenceTransformer based on klue/roberta-base
|
|
results:
|
|
- task:
|
|
type: semantic-similarity
|
|
name: Semantic Similarity
|
|
dataset:
|
|
name: Unknown
|
|
type: unknown
|
|
metrics:
|
|
- type: pearson_cosine
|
|
value: 0.3477070403258199
|
|
name: Pearson Cosine
|
|
- type: spearman_cosine
|
|
value: 0.35560473197486514
|
|
name: Spearman Cosine
|
|
- type: pearson_cosine
|
|
value: 0.9624051736790307
|
|
name: Pearson Cosine
|
|
- type: spearman_cosine
|
|
value: 0.922152297127282
|
|
name: Spearman Cosine
|
|
---
|
|
|
|
# SentenceTransformer based on klue/roberta-base
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [klue/roberta-base](https://huggingface.co/klue/roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
|
|
|
## Model Details
|
|
|
|
### Model Description
|
|
- **Model Type:** Sentence Transformer
|
|
- **Base model:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) <!-- at revision 02f94ba5e3fcb7e2a58a390b8639b0fac974a8da -->
|
|
- **Maximum Sequence Length:** 512 tokens
|
|
- **Output Dimensionality:** 768 dimensions
|
|
- **Similarity Function:** Cosine Similarity
|
|
<!-- - **Training Dataset:** Unknown -->
|
|
<!-- - **Language:** Unknown -->
|
|
<!-- - **License:** Unknown -->
|
|
|
|
### Model Sources
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
|
|
|
### Full Model Architecture
|
|
|
|
```
|
|
SentenceTransformer(
|
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
|
)
|
|
```
|
|
|
|
## Usage
|
|
|
|
### Direct Usage (Sentence Transformers)
|
|
|
|
First install the Sentence Transformers library:
|
|
|
|
```bash
|
|
pip install -U sentence-transformers
|
|
```
|
|
|
|
Then you can load this model and run inference.
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
# Download from the 🤗 Hub
|
|
model = SentenceTransformer("sentence_transformers_model_id")
|
|
# Run inference
|
|
sentences = [
|
|
'또한 숙소는 청결하고 아늑한 장소입니다.',
|
|
'또한, 숙소는 깨끗하고 아늑한 곳입니다.',
|
|
'깜빡하고 백화점 세일 일정 잊어버리면 안된다.',
|
|
]
|
|
embeddings = model.encode(sentences)
|
|
print(embeddings.shape)
|
|
# [3, 768]
|
|
|
|
# Get the similarity scores for the embeddings
|
|
similarities = model.similarity(embeddings, embeddings)
|
|
print(similarities.shape)
|
|
# [3, 3]
|
|
```
|
|
|
|
<!--
|
|
### Direct Usage (Transformers)
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Downstream Usage (Sentence Transformers)
|
|
|
|
You can finetune this model on your own dataset.
|
|
|
|
<details><summary>Click to expand</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Out-of-Scope Use
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
|
-->
|
|
|
|
## Evaluation
|
|
|
|
### Metrics
|
|
|
|
#### Semantic Similarity
|
|
|
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
|
|
|
| Metric | Value |
|
|
|:--------------------|:-----------|
|
|
| pearson_cosine | 0.3477 |
|
|
| **spearman_cosine** | **0.3556** |
|
|
|
|
#### Semantic Similarity
|
|
|
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
|
|
|
| Metric | Value |
|
|
|:--------------------|:-----------|
|
|
| pearson_cosine | 0.9624 |
|
|
| **spearman_cosine** | **0.9222** |
|
|
|
|
<!--
|
|
## Bias, Risks and Limitations
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
|
-->
|
|
|
|
<!--
|
|
### Recommendations
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
|
-->
|
|
|
|
## Training Details
|
|
|
|
### Training Dataset
|
|
|
|
#### Unnamed Dataset
|
|
|
|
|
|
* Size: 10,501 training samples
|
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | sentence_0 | sentence_1 | label |
|
|
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
|
| type | string | string | float |
|
|
| details | <ul><li>min: 6 tokens</li><li>mean: 19.8 tokens</li><li>max: 81 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 19.36 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.46</li><li>max: 1.0</li></ul> |
|
|
* Samples:
|
|
| sentence_0 | sentence_1 | label |
|
|
|:----------------------------------------------------------------|:-------------------------------------------------------------|:------------------|
|
|
| <code>아울러, 4월 9일부터 5월말까지 EBS 교육사이트를 데이터 걱정 없이 이용할 수 있습니다</code> | <code>현장방문 신청 둘째 주인 11월 2일부터 11월 6일까지는 구분없이 신청할 수 있다.</code> | <code>0.08</code> |
|
|
| <code>내일 오전에 있는 수업 몇 시에 시작하더라?</code> | <code>남자친구 생일이 언제야?</code> | <code>0.0</code> |
|
|
| <code>아무리 우수한 방역체계도 신뢰 없이는 작동하기 어렵습니다.</code> | <code>콜센터 시설 내외부 방역도 철저히 실시하기로 했다.</code> | <code>0.12</code> |
|
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
|
```json
|
|
{
|
|
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
|
}
|
|
```
|
|
|
|
### Training Hyperparameters
|
|
#### Non-Default Hyperparameters
|
|
|
|
- `per_device_train_batch_size`: 16
|
|
- `per_device_eval_batch_size`: 16
|
|
- `num_train_epochs`: 4
|
|
- `multi_dataset_batch_sampler`: round_robin
|
|
|
|
#### All Hyperparameters
|
|
<details><summary>Click to expand</summary>
|
|
|
|
- `overwrite_output_dir`: False
|
|
- `do_predict`: False
|
|
- `prediction_loss_only`: True
|
|
- `per_device_train_batch_size`: 16
|
|
- `per_device_eval_batch_size`: 16
|
|
- `per_gpu_train_batch_size`: None
|
|
- `per_gpu_eval_batch_size`: None
|
|
- `gradient_accumulation_steps`: 1
|
|
- `eval_accumulation_steps`: None
|
|
- `learning_rate`: 5e-05
|
|
- `weight_decay`: 0.0
|
|
- `adam_beta1`: 0.9
|
|
- `adam_beta2`: 0.999
|
|
- `adam_epsilon`: 1e-08
|
|
- `max_grad_norm`: 1
|
|
- `num_train_epochs`: 4
|
|
- `max_steps`: -1
|
|
- `lr_scheduler_type`: linear
|
|
- `lr_scheduler_kwargs`: {}
|
|
- `warmup_ratio`: 0.0
|
|
- `warmup_steps`: 0
|
|
- `log_level`: passive
|
|
- `log_level_replica`: warning
|
|
- `log_on_each_node`: True
|
|
- `logging_nan_inf_filter`: True
|
|
- `save_safetensors`: True
|
|
- `save_on_each_node`: False
|
|
- `save_only_model`: False
|
|
- `no_cuda`: False
|
|
- `use_cpu`: False
|
|
- `use_mps_device`: False
|
|
- `seed`: 42
|
|
- `data_seed`: None
|
|
- `jit_mode_eval`: False
|
|
- `use_ipex`: False
|
|
- `bf16`: False
|
|
- `fp16`: False
|
|
- `fp16_opt_level`: O1
|
|
- `half_precision_backend`: auto
|
|
- `bf16_full_eval`: False
|
|
- `fp16_full_eval`: False
|
|
- `tf32`: None
|
|
- `local_rank`: 0
|
|
- `ddp_backend`: None
|
|
- `tpu_num_cores`: None
|
|
- `tpu_metrics_debug`: False
|
|
- `debug`: []
|
|
- `dataloader_drop_last`: False
|
|
- `dataloader_num_workers`: 0
|
|
- `dataloader_prefetch_factor`: None
|
|
- `past_index`: -1
|
|
- `disable_tqdm`: False
|
|
- `remove_unused_columns`: True
|
|
- `label_names`: None
|
|
- `load_best_model_at_end`: False
|
|
- `ignore_data_skip`: False
|
|
- `fsdp`: []
|
|
- `fsdp_min_num_params`: 0
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
|
|
- `deepspeed`: None
|
|
- `label_smoothing_factor`: 0.0
|
|
- `optim`: adamw_torch
|
|
- `optim_args`: None
|
|
- `adafactor`: False
|
|
- `group_by_length`: False
|
|
- `length_column_name`: length
|
|
- `ddp_find_unused_parameters`: None
|
|
- `ddp_bucket_cap_mb`: None
|
|
- `ddp_broadcast_buffers`: False
|
|
- `dataloader_pin_memory`: True
|
|
- `dataloader_persistent_workers`: False
|
|
- `skip_memory_metrics`: True
|
|
- `use_legacy_prediction_loop`: False
|
|
- `push_to_hub`: False
|
|
- `resume_from_checkpoint`: None
|
|
- `hub_model_id`: None
|
|
- `hub_strategy`: every_save
|
|
- `hub_private_repo`: False
|
|
- `hub_always_push`: False
|
|
- `gradient_checkpointing`: False
|
|
- `gradient_checkpointing_kwargs`: None
|
|
- `include_inputs_for_metrics`: False
|
|
- `eval_do_concat_batches`: True
|
|
- `fp16_backend`: auto
|
|
- `push_to_hub_model_id`: None
|
|
- `push_to_hub_organization`: None
|
|
- `mp_parameters`:
|
|
- `auto_find_batch_size`: False
|
|
- `full_determinism`: False
|
|
- `torchdynamo`: None
|
|
- `ray_scope`: last
|
|
- `ddp_timeout`: 1800
|
|
- `torch_compile`: False
|
|
- `torch_compile_backend`: None
|
|
- `torch_compile_mode`: None
|
|
- `dispatch_batches`: None
|
|
- `split_batches`: None
|
|
- `include_tokens_per_second`: False
|
|
- `include_num_input_tokens_seen`: False
|
|
- `neftune_noise_alpha`: None
|
|
- `optim_target_modules`: None
|
|
- `prompts`: None
|
|
- `batch_sampler`: batch_sampler
|
|
- `multi_dataset_batch_sampler`: round_robin
|
|
|
|
</details>
|
|
|
|
### Training Logs
|
|
| Epoch | Step | Training Loss | spearman_cosine |
|
|
|:------:|:----:|:-------------:|:---------------:|
|
|
| 0 | 0 | - | 0.3556 |
|
|
| 0.7610 | 500 | 0.0279 | - |
|
|
| 1.0 | 657 | - | 0.9086 |
|
|
| 1.5221 | 1000 | 0.0087 | 0.9158 |
|
|
| 2.0 | 1314 | - | 0.9177 |
|
|
| 2.2831 | 1500 | 0.0046 | - |
|
|
| 3.0 | 1971 | - | 0.9191 |
|
|
| 3.0441 | 2000 | 0.0034 | 0.9199 |
|
|
| 3.8052 | 2500 | 0.0027 | - |
|
|
| 4.0 | 2628 | - | 0.9222 |
|
|
|
|
|
|
### Environmental Impact
|
|
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
|
- **Energy Consumed**: 0.014 kWh
|
|
- **Carbon Emitted**: 0.006 kg of CO2
|
|
- **Hours Used**: 0.044 hours
|
|
|
|
### Training Hardware
|
|
- **On Cloud**: No
|
|
- **GPU Model**: 1 x NVIDIA GeForce RTX 4090
|
|
- **CPU Model**: Intel(R) Core(TM) i7-14700KF
|
|
- **RAM Size**: 63.83 GB
|
|
|
|
### Framework Versions
|
|
- Python: 3.12.8
|
|
- Sentence Transformers: 3.3.1
|
|
- Transformers: 4.40.1
|
|
- PyTorch: 2.5.1+cu118
|
|
- Accelerate: 0.29.3
|
|
- Datasets: 2.19.1
|
|
- Tokenizers: 0.19.1
|
|
|
|
## Citation
|
|
|
|
### BibTeX
|
|
|
|
#### Sentence Transformers
|
|
```bibtex
|
|
@inproceedings{reimers-2019-sentence-bert,
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
author = "Reimers, Nils and Gurevych, Iryna",
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
month = "11",
|
|
year = "2019",
|
|
publisher = "Association for Computational Linguistics",
|
|
url = "https://arxiv.org/abs/1908.10084",
|
|
}
|
|
```
|
|
|
|
<!--
|
|
## Glossary
|
|
|
|
*Clearly define terms in order to be accessible across audiences.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Authors
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Contact
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
|
--> |