layoutlm-funsd-tf / README.md
pbrennanwhite's picture
Upload TFLayoutLMForTokenClassification
1bd626e
---
tags:
- generated_from_keras_callback
model-index:
- name: layoutlm-funsd-tf
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# layoutlm-funsd-tf
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2445
- Validation Loss: 0.6550
- Train Overall Precision: 0.7272
- Train Overall Recall: 0.7893
- Train Overall F1: 0.7570
- Train Overall Accuracy: 0.8195
- Epoch: 7
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch |
|:----------:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:----------------------:|:-----:|
| 1.6675 | 1.3532 | 0.3327 | 0.3477 | 0.3400 | 0.5549 | 0 |
| 1.0883 | 0.8340 | 0.6022 | 0.6713 | 0.6349 | 0.7466 | 1 |
| 0.7296 | 0.6953 | 0.6452 | 0.7501 | 0.6937 | 0.7836 | 2 |
| 0.5398 | 0.6647 | 0.6832 | 0.7672 | 0.7228 | 0.7895 | 3 |
| 0.4379 | 0.6258 | 0.7092 | 0.7697 | 0.7382 | 0.8069 | 4 |
| 0.3622 | 0.6494 | 0.7240 | 0.8003 | 0.7602 | 0.8095 | 5 |
| 0.3033 | 0.6519 | 0.7096 | 0.7983 | 0.7514 | 0.8111 | 6 |
| 0.2445 | 0.6550 | 0.7272 | 0.7893 | 0.7570 | 0.8195 | 7 |
### Framework versions
- Transformers 4.26.1
- TensorFlow 2.11.0
- Datasets 2.9.0
- Tokenizers 0.13.2