SentenceFormalityClassifier

This model is fine-tuned to classify text based on formality. It has been fine-tuned on [Mohavere Dataset] (Takalli vahideh, Kalantari, Fateme, Shamsfard, Mehrnoush, Developing an Informal-Formal Persian Corpus, 2022.) using the pretrained model persian-t5-formality-transfer.

Evaluation Metrics

INFORMAL: Precision: 0.99 Recall: 0.99 F1-Score: 0.99

FORMAL: Precision: 0.99 Recall: 1.0 F1-Score: 0.99

Accuracy: 0.99

Macro Avg: Precision: 0.99 Recall: 0.99 F1-Score: 0.99

Weighted Avg: Precision: 0.99 Recall: 0.99 F1-Score: 0.99

Usage


from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch

labels = ["INFORMAL", "FORMAL"]

model = AutoModelForSequenceClassification.from_pretrained('parsi-ai-nlpclass/sentence_formality_classifier')
tokenizer = AutoTokenizer.from_pretrained('parsi-ai-nlpclass/sentence_formality_classifier')

def test_model(text):
    inputs = tokenizer(text, return_tensors='pt')
    outputs = model(**inputs)
    predicted_label = labels[int(torch.argmax(outputs.logits))]
    return predicted_label

# Test the model
text1 = "من فقط می‌خواستم بگویم که چقدر قدردان هستم."
print("Original:", text1)
print("Predicted Label:", test_model(text1))

# output: FORMAL

text2 = "آرزویش است او را یک رستوران ببرم."
print("\nOriginal:", text2)
print("Predicted Label:", test_model(text2))

# output: FORMAL

text3 = "گل منو اذیت نکنید"
print("\nOriginal:", text2)
print("Predicted Label:", test_model(text3))

# output: INFORMAL

text4 = "من این دوربین رو خالم برام کادو خرید"
print("\nOriginal:", text2)
print("Predicted Label:", test_model(text3))

# output: INFORMAL


Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.