Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeDisability Representations: Finding Biases in Automatic Image Generation
Recent advancements in image generation technology have enabled widespread access to AI-generated imagery, prominently used in advertising, entertainment, and progressively in every form of visual content. However, these technologies often perpetuate societal biases. This study investigates the representation biases in popular image generation models towards people with disabilities (PWD). Through a comprehensive experiment involving several popular text-to-image models, we analyzed the depiction of disability. The results indicate a significant bias, with most generated images portraying disabled individuals as old, sad, and predominantly using manual wheelchairs. These findings highlight the urgent need for more inclusive AI development, ensuring diverse and accurate representation of PWD in generated images. This research underscores the importance of addressing and mitigating biases in AI models to foster equitable and realistic representations.
IndiBias: A Benchmark Dataset to Measure Social Biases in Language Models for Indian Context
The pervasive influence of social biases in language data has sparked the need for benchmark datasets that capture and evaluate these biases in Large Language Models (LLMs). Existing efforts predominantly focus on English language and the Western context, leaving a void for a reliable dataset that encapsulates India's unique socio-cultural nuances. To bridge this gap, we introduce IndiBias, a comprehensive benchmarking dataset designed specifically for evaluating social biases in the Indian context. We filter and translate the existing CrowS-Pairs dataset to create a benchmark dataset suited to the Indian context in Hindi language. Additionally, we leverage LLMs including ChatGPT and InstructGPT to augment our dataset with diverse societal biases and stereotypes prevalent in India. The included bias dimensions encompass gender, religion, caste, age, region, physical appearance, and occupation. We also build a resource to address intersectional biases along three intersectional dimensions. Our dataset contains 800 sentence pairs and 300 tuples for bias measurement across different demographics. The dataset is available in English and Hindi, providing a size comparable to existing benchmark datasets. Furthermore, using IndiBias we compare ten different language models on multiple bias measurement metrics. We observed that the language models exhibit more bias across a majority of the intersectional groups.
TIBET: Identifying and Evaluating Biases in Text-to-Image Generative Models
Text-to-Image (TTI) generative models have shown great progress in the past few years in terms of their ability to generate complex and high-quality imagery. At the same time, these models have been shown to suffer from harmful biases, including exaggerated societal biases (e.g., gender, ethnicity), as well as incidental correlations that limit such a model's ability to generate more diverse imagery. In this paper, we propose a general approach to study and quantify a broad spectrum of biases, for any TTI model and for any prompt, using counterfactual reasoning. Unlike other works that evaluate generated images on a predefined set of bias axes, our approach automatically identifies potential biases that might be relevant to the given prompt, and measures those biases. In addition, we complement quantitative scores with post-hoc explanations in terms of semantic concepts in the images generated. We show that our method is uniquely capable of explaining complex multi-dimensional biases through semantic concepts, as well as the intersectionality between different biases for any given prompt. We perform extensive user studies to illustrate that the results of our method and analysis are consistent with human judgements.
Global Voices, Local Biases: Socio-Cultural Prejudices across Languages
Human biases are ubiquitous but not uniform: disparities exist across linguistic, cultural, and societal borders. As large amounts of recent literature suggest, language models (LMs) trained on human data can reflect and often amplify the effects of these social biases. However, the vast majority of existing studies on bias are heavily skewed towards Western and European languages. In this work, we scale the Word Embedding Association Test (WEAT) to 24 languages, enabling broader studies and yielding interesting findings about LM bias. We additionally enhance this data with culturally relevant information for each language, capturing local contexts on a global scale. Further, to encompass more widely prevalent societal biases, we examine new bias dimensions across toxicity, ableism, and more. Moreover, we delve deeper into the Indian linguistic landscape, conducting a comprehensive regional bias analysis across six prevalent Indian languages. Finally, we highlight the significance of these social biases and the new dimensions through an extensive comparison of embedding methods, reinforcing the need to address them in pursuit of more equitable language models. All code, data and results are available here: https://github.com/iamshnoo/weathub.
Unboxing Occupational Bias: Grounded Debiasing LLMs with U.S. Labor Data
Large Language Models (LLMs) are prone to inheriting and amplifying societal biases embedded within their training data, potentially reinforcing harmful stereotypes related to gender, occupation, and other sensitive categories. This issue becomes particularly problematic as biased LLMs can have far-reaching consequences, leading to unfair practices and exacerbating social inequalities across various domains, such as recruitment, online content moderation, or even the criminal justice system. Although prior research has focused on detecting bias in LLMs using specialized datasets designed to highlight intrinsic biases, there has been a notable lack of investigation into how these findings correlate with authoritative datasets, such as those from the U.S. National Bureau of Labor Statistics (NBLS). To address this gap, we conduct empirical research that evaluates LLMs in a ``bias-out-of-the-box" setting, analyzing how the generated outputs compare with the distributions found in NBLS data. Furthermore, we propose a straightforward yet effective debiasing mechanism that directly incorporates NBLS instances to mitigate bias within LLMs. Our study spans seven different LLMs, including instructable, base, and mixture-of-expert models, and reveals significant levels of bias that are often overlooked by existing bias detection techniques. Importantly, our debiasing method, which does not rely on external datasets, demonstrates a substantial reduction in bias scores, highlighting the efficacy of our approach in creating fairer and more reliable LLMs.
Fairness Definitions in Language Models Explained
Language Models (LMs) have demonstrated exceptional performance across various Natural Language Processing (NLP) tasks. Despite these advancements, LMs can inherit and amplify societal biases related to sensitive attributes such as gender and race, limiting their adoption in real-world applications. Therefore, fairness has been extensively explored in LMs, leading to the proposal of various fairness notions. However, the lack of clear agreement on which fairness definition to apply in specific contexts (e.g., medium-sized LMs versus large-sized LMs) and the complexity of understanding the distinctions between these definitions can create confusion and impede further progress. To this end, this paper proposes a systematic survey that clarifies the definitions of fairness as they apply to LMs. Specifically, we begin with a brief introduction to LMs and fairness in LMs, followed by a comprehensive, up-to-date overview of existing fairness notions in LMs and the introduction of a novel taxonomy that categorizes these concepts based on their foundational principles and operational distinctions. We further illustrate each definition through experiments, showcasing their practical implications and outcomes. Finally, we discuss current research challenges and open questions, aiming to foster innovative ideas and advance the field. The implementation and additional resources are publicly available at https://github.com/LavinWong/Fairness-in-Large-Language-Models/tree/main/definitions.
Persistent Anti-Muslim Bias in Large Language Models
It has been observed that large-scale language models capture undesirable societal biases, e.g. relating to race and gender; yet religious bias has been relatively unexplored. We demonstrate that GPT-3, a state-of-the-art contextual language model, captures persistent Muslim-violence bias. We probe GPT-3 in various ways, including prompt completion, analogical reasoning, and story generation, to understand this anti-Muslim bias, demonstrating that it appears consistently and creatively in different uses of the model and that it is severe even compared to biases about other religious groups. For instance, "Muslim" is analogized to "terrorist" in 23% of test cases, while "Jewish" is mapped to "money" in 5% of test cases. We quantify the positive distraction needed to overcome this bias with adversarial text prompts, and find that use of the most positive 6 adjectives reduces violent completions for "Muslims" from 66% to 20%, but which is still higher than for other religious groups.
Gender-tuning: Empowering Fine-tuning for Debiasing Pre-trained Language Models
Recent studies have revealed that the widely-used Pre-trained Language Models (PLMs) propagate societal biases from the large unmoderated pre-training corpora. Existing solutions require debiasing training processes and datasets for debiasing, which are resource-intensive and costly. Furthermore, these methods hurt the PLMs' performance on downstream tasks. In this study, we propose Gender-tuning, which debiases the PLMs through fine-tuning on downstream tasks' datasets. For this aim, Gender-tuning integrates Masked Language Modeling (MLM) training objectives into fine-tuning's training process. Comprehensive experiments show that Gender-tuning outperforms the state-of-the-art baselines in terms of average gender bias scores in PLMs while improving PLMs' performance on downstream tasks solely using the downstream tasks' dataset. Also, Gender-tuning is a deployable debiasing tool for any PLM that works with original fine-tuning.
Socially Aware Bias Measurements for Hindi Language Representations
Language representations are efficient tools used across NLP applications, but they are strife with encoded societal biases. These biases are studied extensively, but with a primary focus on English language representations and biases common in the context of Western society. In this work, we investigate biases present in Hindi language representations with focuses on caste and religion-associated biases. We demonstrate how biases are unique to specific language representations based on the history and culture of the region they are widely spoken in, and how the same societal bias (such as binary gender-associated biases) is encoded by different words and text spans across languages. The discoveries of our work highlight the necessity of culture awareness and linguistic artifacts when modeling language representations, in order to better understand the encoded biases.
GeniL: A Multilingual Dataset on Generalizing Language
LLMs are increasingly transforming our digital ecosystem, but they often inherit societal biases learned from their training data, for instance stereotypes associating certain attributes with specific identity groups. While whether and how these biases are mitigated may depend on the specific use cases, being able to effectively detect instances of stereotype perpetuation is a crucial first step. Current methods to assess presence of stereotypes in generated language rely on simple template or co-occurrence based measures, without accounting for the variety of sentential contexts they manifest in. We argue that understanding the sentential context is crucial for detecting instances of generalization. We distinguish two types of generalizations: (1) language that merely mentions the presence of a generalization ("people think the French are very rude"), and (2) language that reinforces such a generalization ("as French they must be rude"), from non-generalizing context ("My French friends think I am rude"). For meaningful stereotype evaluations, we need to reliably distinguish such instances of generalizations. We introduce the new task of detecting generalization in language, and build GeniL, a multilingual dataset of over 50K sentences from 9 languages (English, Arabic, Bengali, Spanish, French, Hindi, Indonesian, Malay, and Portuguese) annotated for instances of generalizations. We demonstrate that the likelihood of a co-occurrence being an instance of generalization is usually low, and varies across different languages, identity groups, and attributes. We build classifiers to detect generalization in language with an overall PR-AUC of 58.7, with varying degrees of performance across languages. Our research provides data and tools to enable a nuanced understanding of stereotype perpetuation, a crucial step towards more inclusive and responsible language technologies.
FairerCLIP: Debiasing CLIP's Zero-Shot Predictions using Functions in RKHSs
Large pre-trained vision-language models such as CLIP provide compact and general-purpose representations of text and images that are demonstrably effective across multiple downstream zero-shot prediction tasks. However, owing to the nature of their training process, these models have the potential to 1) propagate or amplify societal biases in the training data and 2) learn to rely on spurious features. This paper proposes FairerCLIP, a general approach for making zero-shot predictions of CLIP more fair and robust to spurious correlations. We formulate the problem of jointly debiasing CLIP's image and text representations in reproducing kernel Hilbert spaces (RKHSs), which affords multiple benefits: 1) Flexibility: Unlike existing approaches, which are specialized to either learn with or without ground-truth labels, FairerCLIP is adaptable to learning in both scenarios. 2) Ease of Optimization: FairerCLIP lends itself to an iterative optimization involving closed-form solvers, which leads to 4times-10times faster training than the existing methods. 3) Sample Efficiency: Under sample-limited conditions, FairerCLIP significantly outperforms baselines when they fail entirely. And, 4) Performance: Empirically, FairerCLIP achieves appreciable accuracy gains on benchmark fairness and spurious correlation datasets over their respective baselines.
Towards Auditing Large Language Models: Improving Text-based Stereotype Detection
Large Language Models (LLM) have made significant advances in the recent past becoming more mainstream in Artificial Intelligence (AI) enabled human-facing applications. However, LLMs often generate stereotypical output inherited from historical data, amplifying societal biases and raising ethical concerns. This work introduces i) the Multi-Grain Stereotype Dataset, which includes 52,751 instances of gender, race, profession and religion stereotypic text and ii) a novel stereotype classifier for English text. We design several experiments to rigorously test the proposed model trained on the novel dataset. Our experiments show that training the model in a multi-class setting can outperform the one-vs-all binary counterpart. Consistent feature importance signals from different eXplainable AI tools demonstrate that the new model exploits relevant text features. We utilise the newly created model to assess the stereotypic behaviour of the popular GPT family of models and observe the reduction of bias over time. In summary, our work establishes a robust and practical framework for auditing and evaluating the stereotypic bias in LLM.
Casteist but Not Racist? Quantifying Disparities in Large Language Model Bias between India and the West
Large Language Models (LLMs), now used daily by millions of users, can encode societal biases, exposing their users to representational harms. A large body of scholarship on LLM bias exists but it predominantly adopts a Western-centric frame and attends comparatively less to bias levels and potential harms in the Global South. In this paper, we quantify stereotypical bias in popular LLMs according to an Indian-centric frame and compare bias levels between the Indian and Western contexts. To do this, we develop a novel dataset which we call Indian-BhED (Indian Bias Evaluation Dataset), containing stereotypical and anti-stereotypical examples for caste and religion contexts. We find that the majority of LLMs tested are strongly biased towards stereotypes in the Indian context, especially as compared to the Western context. We finally investigate Instruction Prompting as a simple intervention to mitigate such bias and find that it significantly reduces both stereotypical and anti-stereotypical biases in the majority of cases for GPT-3.5. The findings of this work highlight the need for including more diverse voices when evaluating LLMs.
Mitigating Gender Bias in Natural Language Processing: Literature Review
As Natural Language Processing (NLP) and Machine Learning (ML) tools rise in popularity, it becomes increasingly vital to recognize the role they play in shaping societal biases and stereotypes. Although NLP models have shown success in modeling various applications, they propagate and may even amplify gender bias found in text corpora. While the study of bias in artificial intelligence is not new, methods to mitigate gender bias in NLP are relatively nascent. In this paper, we review contemporary studies on recognizing and mitigating gender bias in NLP. We discuss gender bias based on four forms of representation bias and analyze methods recognizing gender bias. Furthermore, we discuss the advantages and drawbacks of existing gender debiasing methods. Finally, we discuss future studies for recognizing and mitigating gender bias in NLP.
FairVis: Visual Analytics for Discovering Intersectional Bias in Machine Learning
The growing capability and accessibility of machine learning has led to its application to many real-world domains and data about people. Despite the benefits algorithmic systems may bring, models can reflect, inject, or exacerbate implicit and explicit societal biases into their outputs, disadvantaging certain demographic subgroups. Discovering which biases a machine learning model has introduced is a great challenge, due to the numerous definitions of fairness and the large number of potentially impacted subgroups. We present FairVis, a mixed-initiative visual analytics system that integrates a novel subgroup discovery technique for users to audit the fairness of machine learning models. Through FairVis, users can apply domain knowledge to generate and investigate known subgroups, and explore suggested and similar subgroups. FairVis' coordinated views enable users to explore a high-level overview of subgroup performance and subsequently drill down into detailed investigation of specific subgroups. We show how FairVis helps to discover biases in two real datasets used in predicting income and recidivism. As a visual analytics system devoted to discovering bias in machine learning, FairVis demonstrates how interactive visualization may help data scientists and the general public understand and create more equitable algorithmic systems.
Born With a Silver Spoon? Investigating Socioeconomic Bias in Large Language Models
Socioeconomic bias in society exacerbates disparities, influencing access to opportunities and resources based on individuals' economic and social backgrounds. This pervasive issue perpetuates systemic inequalities, hindering the pursuit of inclusive progress as a society. In this paper, we investigate the presence of socioeconomic bias, if any, in large language models. To this end, we introduce a novel dataset SilverSpoon, consisting of 3000 samples that illustrate hypothetical scenarios that involve underprivileged people performing ethically ambiguous actions due to their circumstances, and ask whether the action is ethically justified. Further, this dataset has a dual-labeling scheme and has been annotated by people belonging to both ends of the socioeconomic spectrum. Using SilverSpoon, we evaluate the degree of socioeconomic bias expressed in large language models and the variation of this degree as a function of model size. We also perform qualitative analysis to analyze the nature of this bias. Our analysis reveals that while humans disagree on which situations require empathy toward the underprivileged, most large language models are unable to empathize with the socioeconomically underprivileged regardless of the situation. To foster further research in this domain, we make SilverSpoon and our evaluation harness publicly available.
"Kelly is a Warm Person, Joseph is a Role Model": Gender Biases in LLM-Generated Reference Letters
Large Language Models (LLMs) have recently emerged as an effective tool to assist individuals in writing various types of content, including professional documents such as recommendation letters. Though bringing convenience, this application also introduces unprecedented fairness concerns. Model-generated reference letters might be directly used by users in professional scenarios. If underlying biases exist in these model-constructed letters, using them without scrutinization could lead to direct societal harms, such as sabotaging application success rates for female applicants. In light of this pressing issue, it is imminent and necessary to comprehensively study fairness issues and associated harms in this real-world use case. In this paper, we critically examine gender biases in LLM-generated reference letters. Drawing inspiration from social science findings, we design evaluation methods to manifest biases through 2 dimensions: (1) biases in language style and (2) biases in lexical content. We further investigate the extent of bias propagation by analyzing the hallucination bias of models, a term that we define to be bias exacerbation in model-hallucinated contents. Through benchmarking evaluation on 2 popular LLMs- ChatGPT and Alpaca, we reveal significant gender biases in LLM-generated recommendation letters. Our findings not only warn against using LLMs for this application without scrutinization, but also illuminate the importance of thoroughly studying hidden biases and harms in LLM-generated professional documents.
Stable Bias: Analyzing Societal Representations in Diffusion Models
As machine learning-enabled Text-to-Image (TTI) systems are becoming increasingly prevalent and seeing growing adoption as commercial services, characterizing the social biases they exhibit is a necessary first step to lowering their risk of discriminatory outcomes. This evaluation, however, is made more difficult by the synthetic nature of these systems' outputs; since artificial depictions of fictive humans have no inherent gender or ethnicity nor do they belong to socially-constructed groups, we need to look beyond common categorizations of diversity or representation. To address this need, we propose a new method for exploring and quantifying social biases in TTI systems by directly comparing collections of generated images designed to showcase a system's variation across social attributes -- gender and ethnicity -- and target attributes for bias evaluation -- professions and gender-coded adjectives. Our approach allows us to (i) identify specific bias trends through visualization tools, (ii) provide targeted scores to directly compare models in terms of diversity and representation, and (iii) jointly model interdependent social variables to support a multidimensional analysis. We use this approach to analyze over 96,000 images generated by 3 popular TTI systems (DALL-E 2, Stable Diffusion v 1.4 and v 2) and find that all three significantly over-represent the portion of their latent space associated with whiteness and masculinity across target attributes; among the systems studied, DALL-E 2 shows the least diversity, followed by Stable Diffusion v2 then v1.4.
Breaking Bias, Building Bridges: Evaluation and Mitigation of Social Biases in LLMs via Contact Hypothesis
Large Language Models (LLMs) perpetuate social biases, reflecting prejudices in their training data and reinforcing societal stereotypes and inequalities. Our work explores the potential of the Contact Hypothesis, a concept from social psychology for debiasing LLMs. We simulate various forms of social contact through LLM prompting to measure their influence on the model's biases, mirroring how intergroup interactions can reduce prejudices in social contexts. We create a dataset of 108,000 prompts following a principled approach replicating social contact to measure biases in three LLMs (LLaMA 2, Tulu, and NousHermes) across 13 social bias dimensions. We propose a unique debiasing technique, Social Contact Debiasing (SCD), that instruction-tunes these models with unbiased responses to prompts. Our research demonstrates that LLM responses exhibit social biases when subject to contact probing, but more importantly, these biases can be significantly reduced by up to 40% in 1 epoch of instruction tuning LLaMA 2 following our SCD strategy. Our code and data are available at https://github.com/chahatraj/breakingbias.
Analyzing the Impact of Data Selection and Fine-Tuning on Economic and Political Biases in LLMs
In an era where language models are increasingly integrated into decision-making and communication, understanding the biases within Large Language Models (LLMs) becomes imperative, especially when these models are applied in the economic and political domains. This work investigates the impact of fine-tuning and data selection on economic and political biases in LLM. We explore the methodological aspects of biasing LLMs towards specific ideologies, mindful of the biases that arise from their extensive training on diverse datasets. Our approach, distinct from earlier efforts that either focus on smaller models or entail resource-intensive pre-training, employs Parameter-Efficient Fine-Tuning (PEFT) techniques. These techniques allow for the alignment of LLMs with targeted ideologies by modifying a small subset of parameters. We introduce a systematic method for dataset selection, annotation, and instruction tuning, and we assess its effectiveness through both quantitative and qualitative evaluations. Our work analyzes the potential of embedding specific biases into LLMs and contributes to the dialogue on the ethical application of AI, highlighting the importance of deploying AI in a manner that aligns with societal values.
"I'm sorry to hear that": Finding New Biases in Language Models with a Holistic Descriptor Dataset
As language models grow in popularity, it becomes increasingly important to clearly measure all possible markers of demographic identity in order to avoid perpetuating existing societal harms. Many datasets for measuring bias currently exist, but they are restricted in their coverage of demographic axes and are commonly used with preset bias tests that presuppose which types of biases models can exhibit. In this work, we present a new, more inclusive bias measurement dataset, HolisticBias, which includes nearly 600 descriptor terms across 13 different demographic axes. HolisticBias was assembled in a participatory process including experts and community members with lived experience of these terms. These descriptors combine with a set of bias measurement templates to produce over 450,000 unique sentence prompts, which we use to explore, identify, and reduce novel forms of bias in several generative models. We demonstrate that HolisticBias is effective at measuring previously undetectable biases in token likelihoods from language models, as well as in an offensiveness classifier. We will invite additions and amendments to the dataset, which we hope will serve as a basis for more easy-to-use and standardized methods for evaluating bias in NLP models.
Are Personalized Stochastic Parrots More Dangerous? Evaluating Persona Biases in Dialogue Systems
Recent advancements in Large Language Models empower them to follow freeform instructions, including imitating generic or specific demographic personas in conversations. We define generic personas to represent demographic groups, such as "an Asian person", whereas specific personas may take the form of specific popular Asian names like "Yumi". While the adoption of personas enriches user experiences by making dialogue systems more engaging and approachable, it also casts a shadow of potential risk by exacerbating social biases within model responses, thereby causing societal harm through interactions with users. In this paper, we systematically study "persona biases", which we define to be the sensitivity of dialogue models' harmful behaviors contingent upon the personas they adopt. We categorize persona biases into biases in harmful expression and harmful agreement, and establish a comprehensive evaluation framework to measure persona biases in five aspects: Offensiveness, Toxic Continuation, Regard, Stereotype Agreement, and Toxic Agreement. Additionally, we propose to investigate persona biases by experimenting with UNIVERSALPERSONA, a systematically constructed persona dataset encompassing various types of both generic and specific model personas. Through benchmarking on four different models -- including Blender, ChatGPT, Alpaca, and Vicuna -- our study uncovers significant persona biases in dialogue systems. Our findings also underscore the pressing need to revisit the use of personas in dialogue agents to ensure safe application.
Survey on Sociodemographic Bias in Natural Language Processing
Deep neural networks often learn unintended bias during training, which might have harmful effects when deployed in real-world settings. This work surveys 214 papers related to sociodemographic bias in natural language processing (NLP). In this study, we aim to provide a more comprehensive understanding of the similarities and differences among approaches to sociodemographic bias in NLP. To better understand the distinction between bias and real-world harm, we turn to ideas from psychology and behavioral economics to propose a definition for sociodemographic bias. We identify three main categories of NLP bias research: types of bias, quantifying bias, and debiasing techniques. We highlight the current trends in quantifying bias and debiasing techniques, offering insights into their strengths and weaknesses. We conclude that current approaches on quantifying bias face reliability issues, that many of the bias metrics do not relate to real-world bias, and that debiasing techniques need to focus more on training methods. Finally, we provide recommendations for future work.
Towards Debiasing Sentence Representations
As natural language processing methods are increasingly deployed in real-world scenarios such as healthcare, legal systems, and social science, it becomes necessary to recognize the role they potentially play in shaping social biases and stereotypes. Previous work has revealed the presence of social biases in widely used word embeddings involving gender, race, religion, and other social constructs. While some methods were proposed to debias these word-level embeddings, there is a need to perform debiasing at the sentence-level given the recent shift towards new contextualized sentence representations such as ELMo and BERT. In this paper, we investigate the presence of social biases in sentence-level representations and propose a new method, Sent-Debias, to reduce these biases. We show that Sent-Debias is effective in removing biases, and at the same time, preserves performance on sentence-level downstream tasks such as sentiment analysis, linguistic acceptability, and natural language understanding. We hope that our work will inspire future research on characterizing and removing social biases from widely adopted sentence representations for fairer NLP.
BiasAsker: Measuring the Bias in Conversational AI System
Powered by advanced Artificial Intelligence (AI) techniques, conversational AI systems, such as ChatGPT and digital assistants like Siri, have been widely deployed in daily life. However, such systems may still produce content containing biases and stereotypes, causing potential social problems. Due to the data-driven, black-box nature of modern AI techniques, comprehensively identifying and measuring biases in conversational systems remains a challenging task. Particularly, it is hard to generate inputs that can comprehensively trigger potential bias due to the lack of data containing both social groups as well as biased properties. In addition, modern conversational systems can produce diverse responses (e.g., chatting and explanation), which makes existing bias detection methods simply based on the sentiment and the toxicity hardly being adopted. In this paper, we propose BiasAsker, an automated framework to identify and measure social bias in conversational AI systems. To obtain social groups and biased properties, we construct a comprehensive social bias dataset, containing a total of 841 groups and 8,110 biased properties. Given the dataset, BiasAsker automatically generates questions and adopts a novel method based on existence measurement to identify two types of biases (i.e., absolute bias and related bias) in conversational systems. Extensive experiments on 8 commercial systems and 2 famous research models, such as ChatGPT and GPT-3, show that 32.83% of the questions generated by BiasAsker can trigger biased behaviors in these widely deployed conversational systems. All the code, data, and experimental results have been released to facilitate future research.
SB-Bench: Stereotype Bias Benchmark for Large Multimodal Models
Stereotype biases in Large Multimodal Models (LMMs) perpetuate harmful societal prejudices, undermining the fairness and equity of AI applications. As LMMs grow increasingly influential, addressing and mitigating inherent biases related to stereotypes, harmful generations, and ambiguous assumptions in real-world scenarios has become essential. However, existing datasets evaluating stereotype biases in LMMs often lack diversity and rely on synthetic images, leaving a gap in bias evaluation for real-world visual contexts. To address this, we introduce the Stereotype Bias Benchmark (SB-bench), the most comprehensive framework to date for assessing stereotype biases across nine diverse categories with non-synthetic images. SB-bench rigorously evaluates LMMs through carefully curated, visually grounded scenarios, challenging them to reason accurately about visual stereotypes. It offers a robust evaluation framework featuring real-world visual samples, image variations, and multiple-choice question formats. By introducing visually grounded queries that isolate visual biases from textual ones, SB-bench enables a precise and nuanced assessment of a model's reasoning capabilities across varying levels of difficulty. Through rigorous testing of state-of-the-art open-source and closed-source LMMs, SB-bench provides a systematic approach to assessing stereotype biases in LMMs across key social dimensions. This benchmark represents a significant step toward fostering fairness in AI systems and reducing harmful biases, laying the groundwork for more equitable and socially responsible LMMs. Our code and dataset are publicly available.
Language (Technology) is Power: A Critical Survey of "Bias" in NLP
We survey 146 papers analyzing "bias" in NLP systems, finding that their motivations are often vague, inconsistent, and lacking in normative reasoning, despite the fact that analyzing "bias" is an inherently normative process. We further find that these papers' proposed quantitative techniques for measuring or mitigating "bias" are poorly matched to their motivations and do not engage with the relevant literature outside of NLP. Based on these findings, we describe the beginnings of a path forward by proposing three recommendations that should guide work analyzing "bias" in NLP systems. These recommendations rest on a greater recognition of the relationships between language and social hierarchies, encouraging researchers and practitioners to articulate their conceptualizations of "bias"---i.e., what kinds of system behaviors are harmful, in what ways, to whom, and why, as well as the normative reasoning underlying these statements---and to center work around the lived experiences of members of communities affected by NLP systems, while interrogating and reimagining the power relations between technologists and such communities.
NBIAS: A Natural Language Processing Framework for Bias Identification in Text
Bias in textual data can lead to skewed interpretations and outcomes when the data is used. These biases could perpetuate stereotypes, discrimination, or other forms of unfair treatment. An algorithm trained on biased data may end up making decisions that disproportionately impact a certain group of people. Therefore, it is crucial to detect and remove these biases to ensure the fair and ethical use of data. To this end, we develop a comprehensive and robust framework NBIAS that consists of four main layers: data, corpus construction, model development and an evaluation layer. The dataset is constructed by collecting diverse data from various domains, including social media, healthcare, and job hiring portals. As such, we applied a transformer-based token classification model that is able to identify bias words/ phrases through a unique named entity BIAS. In the evaluation procedure, we incorporate a blend of quantitative and qualitative measures to gauge the effectiveness of our models. We achieve accuracy improvements ranging from 1% to 8% compared to baselines. We are also able to generate a robust understanding of the model functioning. The proposed approach is applicable to a variety of biases and contributes to the fair and ethical use of textual data.
E2MoCase: A Dataset for Emotional, Event and Moral Observations in News Articles on High-impact Legal Cases
The way media reports on legal cases can significantly shape public opinion, often embedding subtle biases that influence societal views on justice and morality. Analyzing these biases requires a holistic approach that captures the emotional tone, moral framing, and specific events within the narratives. In this work we introduce E2MoCase, a novel dataset designed to facilitate the integrated analysis of emotions, moral values, and events within legal narratives and media coverage. By leveraging advanced models for emotion detection, moral value identification, and event extraction, E2MoCase offers a multi-dimensional perspective on how legal cases are portrayed in news articles.
Which Shortcut Cues Will DNNs Choose? A Study from the Parameter-Space Perspective
Deep neural networks (DNNs) often rely on easy-to-learn discriminatory features, or cues, that are not necessarily essential to the problem at hand. For example, ducks in an image may be recognized based on their typical background scenery, such as lakes or streams. This phenomenon, also known as shortcut learning, is emerging as a key limitation of the current generation of machine learning models. In this work, we introduce a set of experiments to deepen our understanding of shortcut learning and its implications. We design a training setup with several shortcut cues, named WCST-ML, where each cue is equally conducive to the visual recognition problem at hand. Even under equal opportunities, we observe that (1) certain cues are preferred to others, (2) solutions biased to the easy-to-learn cues tend to converge to relatively flat minima on the loss surface, and (3) the solutions focusing on those preferred cues are far more abundant in the parameter space. We explain the abundance of certain cues via their Kolmogorov (descriptional) complexity: solutions corresponding to Kolmogorov-simple cues are abundant in the parameter space and are thus preferred by DNNs. Our studies are based on the synthetic dataset DSprites and the face dataset UTKFace. In our WCST-ML, we observe that the inborn bias of models leans toward simple cues, such as color and ethnicity. Our findings emphasize the importance of active human intervention to remove the inborn model biases that may cause negative societal impacts.
How far can bias go? -- Tracing bias from pretraining data to alignment
As LLMs are increasingly integrated into user-facing applications, addressing biases that perpetuate societal inequalities is crucial. While much work has gone into measuring or mitigating biases in these models, fewer studies have investigated their origins. Therefore, this study examines the correlation between gender-occupation bias in pre-training data and their manifestation in LLMs, focusing on the Dolma dataset and the OLMo model. Using zero-shot prompting and token co-occurrence analyses, we explore how biases in training data influence model outputs. Our findings reveal that biases present in pre-training data are amplified in model outputs. The study also examines the effects of prompt types, hyperparameters, and instruction-tuning on bias expression, finding instruction-tuning partially alleviating representational bias while still maintaining overall stereotypical gender associations, whereas hyperparameters and prompting variation have a lesser effect on bias expression. Our research traces bias throughout the LLM development pipeline and underscores the importance of mitigating bias at the pretraining stage.
Automatically Neutralizing Subjective Bias in Text
Texts like news, encyclopedias, and some social media strive for objectivity. Yet bias in the form of inappropriate subjectivity - introducing attitudes via framing, presupposing truth, and casting doubt - remains ubiquitous. This kind of bias erodes our collective trust and fuels social conflict. To address this issue, we introduce a novel testbed for natural language generation: automatically bringing inappropriately subjective text into a neutral point of view ("neutralizing" biased text). We also offer the first parallel corpus of biased language. The corpus contains 180,000 sentence pairs and originates from Wikipedia edits that removed various framings, presuppositions, and attitudes from biased sentences. Last, we propose two strong encoder-decoder baselines for the task. A straightforward yet opaque CONCURRENT system uses a BERT encoder to identify subjective words as part of the generation process. An interpretable and controllable MODULAR algorithm separates these steps, using (1) a BERT-based classifier to identify problematic words and (2) a novel join embedding through which the classifier can edit the hidden states of the encoder. Large-scale human evaluation across four domains (encyclopedias, news headlines, books, and political speeches) suggests that these algorithms are a first step towards the automatic identification and reduction of bias.
Persuasion with Large Language Models: a Survey
The rapid rise of Large Language Models (LLMs) has created new disruptive possibilities for persuasive communication, by enabling fully-automated personalized and interactive content generation at an unprecedented scale. In this paper, we survey the research field of LLM-based persuasion that has emerged as a result. We begin by exploring the different modes in which LLM Systems are used to influence human attitudes and behaviors. In areas such as politics, marketing, public health, e-commerce, and charitable giving, such LLM Systems have already achieved human-level or even super-human persuasiveness. We identify key factors influencing their effectiveness, such as the manner of personalization and whether the content is labelled as AI-generated. We also summarize the experimental designs that have been used to evaluate progress. Our survey suggests that the current and future potential of LLM-based persuasion poses profound ethical and societal risks, including the spread of misinformation, the magnification of biases, and the invasion of privacy. These risks underscore the urgent need for ethical guidelines and updated regulatory frameworks to avoid the widespread deployment of irresponsible and harmful LLM Systems.
UnlearnCanvas: A Stylized Image Dataset to Benchmark Machine Unlearning for Diffusion Models
The rapid advancement of diffusion models (DMs) has not only transformed various real-world industries but has also introduced negative societal concerns, including the generation of harmful content, copyright disputes, and the rise of stereotypes and biases. To mitigate these issues, machine unlearning (MU) has emerged as a potential solution, demonstrating its ability to remove undesired generative capabilities of DMs in various applications. However, by examining existing MU evaluation methods, we uncover several key challenges that can result in incomplete, inaccurate, or biased evaluations for MU in DMs. To address them, we enhance the evaluation metrics for MU, including the introduction of an often-overlooked retainability measurement for DMs post-unlearning. Additionally, we introduce UnlearnCanvas, a comprehensive high-resolution stylized image dataset that facilitates us to evaluate the unlearning of artistic painting styles in conjunction with associated image objects. We show that this dataset plays a pivotal role in establishing a standardized and automated evaluation framework for MU techniques on DMs, featuring 7 quantitative metrics to address various aspects of unlearning effectiveness. Through extensive experiments, we benchmark 5 state-of-the-art MU methods, revealing novel insights into their pros and cons, and the underlying unlearning mechanisms. Furthermore, we demonstrate the potential of UnlearnCanvas to benchmark other generative modeling tasks, such as style transfer. The UnlearnCanvas dataset, benchmark, and the codes to reproduce all the results in this work can be found at https://github.com/OPTML-Group/UnlearnCanvas.
A Multi-LLM Debiasing Framework
Large Language Models (LLMs) are powerful tools with the potential to benefit society immensely, yet, they have demonstrated biases that perpetuate societal inequalities. Despite significant advancements in bias mitigation techniques using data augmentation, zero-shot prompting, and model fine-tuning, biases continuously persist, including subtle biases that may elude human detection. Recent research has shown a growing interest in multi-LLM approaches, which have been demonstrated to be effective in improving the quality of reasoning and factuality in LLMs. Building on this approach, we propose a novel multi-LLM debiasing framework aimed at reducing bias in LLMs. Our work is the first to introduce and evaluate two distinct approaches within this framework for debiasing LLMs: a centralized method, where the conversation is facilitated by a single central LLM, and a decentralized method, where all models communicate directly. Our findings reveal that our multi-LLM framework significantly reduces bias in LLMs, outperforming the baseline method across several social groups.
Pretrained AI Models: Performativity, Mobility, and Change
The paradigm of pretrained deep learning models has recently emerged in artificial intelligence practice, allowing deployment in numerous societal settings with limited computational resources, but also embedding biases and enabling unintended negative uses. In this paper, we treat pretrained models as objects of study and discuss the ethical impacts of their sociological position. We discuss how pretrained models are developed and compared under the common task framework, but that this may make self-regulation inadequate. Further how pretrained models may have a performative effect on society that exacerbates biases. We then discuss how pretrained models move through actor networks as a kind of computationally immutable mobile, but that users also act as agents of technological change by reinterpreting them via fine-tuning and transfer. We further discuss how users may use pretrained models in malicious ways, drawing a novel connection between the responsible innovation and user-centered innovation literatures. We close by discussing how this sociological understanding of pretrained models can inform AI governance frameworks for fairness, accountability, and transparency.
Disagreement as a way to study misinformation and its effects
Misinformation - false or misleading information - is considered a significant societal concern due to its associated "misinformation effects," such as political polarization, erosion of trust in institutions, problematic behavior, and public health challenges. However, the prevailing concept is misaligned with what is studied. While misinformation focuses on instances of information about factual matters, the broad spectrum of effects often manifests at a societal level and is shaped by a wide range of interdependent factors such as identity, values, opinions, epistemologies, and disagreements. Unsurprisingly, misinformation effects can occur without the prevalence of misinformation, and misinformation does not necessarily increase the effects studied. Here, we propose using disagreement - conflicting attitudes and beliefs between individuals and communities - as a way to study misinformation effects because it addresses the identified conceptual limitations of misinformation. Furthermore, unlike misinformation, disagreement does not require researchers to determine whether a given information is false or misleading. Thus, it can be studied and, more importantly, measured without the need to make a normative judgment about a given information, even when the specific topic is entirely removed, as we show in a longitudinal disagreement measurement. We demonstrate that disagreement, as a holistic concept, provides better explanations for the occurrence of misinformation effects, enhances precision in developing appropriate interventions, and offers a promising approach for evaluating them through quantification. Finally, we show how disagreement addresses current misinformation research questions and conclude with recommendations for research practice.
BBQ: A Hand-Built Bias Benchmark for Question Answering
It is well documented that NLP models learn social biases, but little work has been done on how these biases manifest in model outputs for applied tasks like question answering (QA). We introduce the Bias Benchmark for QA (BBQ), a dataset of question sets constructed by the authors that highlight attested social biases against people belonging to protected classes along nine social dimensions relevant for U.S. English-speaking contexts. Our task evaluates model responses at two levels: (i) given an under-informative context, we test how strongly responses reflect social biases, and (ii) given an adequately informative context, we test whether the model's biases override a correct answer choice. We find that models often rely on stereotypes when the context is under-informative, meaning the model's outputs consistently reproduce harmful biases in this setting. Though models are more accurate when the context provides an informative answer, they still rely on stereotypes and average up to 3.4 percentage points higher accuracy when the correct answer aligns with a social bias than when it conflicts, with this difference widening to over 5 points on examples targeting gender for most models tested.
CrowS-Pairs: A Challenge Dataset for Measuring Social Biases in Masked Language Models
Pretrained language models, especially masked language models (MLMs) have seen success across many NLP tasks. However, there is ample evidence that they use the cultural biases that are undoubtedly present in the corpora they are trained on, implicitly creating harm with biased representations. To measure some forms of social bias in language models against protected demographic groups in the US, we introduce the Crowdsourced Stereotype Pairs benchmark (CrowS-Pairs). CrowS-Pairs has 1508 examples that cover stereotypes dealing with nine types of bias, like race, religion, and age. In CrowS-Pairs a model is presented with two sentences: one that is more stereotyping and another that is less stereotyping. The data focuses on stereotypes about historically disadvantaged groups and contrasts them with advantaged groups. We find that all three of the widely-used MLMs we evaluate substantially favor sentences that express stereotypes in every category in CrowS-Pairs. As work on building less biased models advances, this dataset can be used as a benchmark to evaluate progress.
From Pretraining Data to Language Models to Downstream Tasks: Tracking the Trails of Political Biases Leading to Unfair NLP Models
Language models (LMs) are pretrained on diverse data sources, including news, discussion forums, books, and online encyclopedias. A significant portion of this data includes opinions and perspectives which, on one hand, celebrate democracy and diversity of ideas, and on the other hand are inherently socially biased. Our work develops new methods to (1) measure political biases in LMs trained on such corpora, along social and economic axes, and (2) measure the fairness of downstream NLP models trained on top of politically biased LMs. We focus on hate speech and misinformation detection, aiming to empirically quantify the effects of political (social, economic) biases in pretraining data on the fairness of high-stakes social-oriented tasks. Our findings reveal that pretrained LMs do have political leanings that reinforce the polarization present in pretraining corpora, propagating social biases into hate speech predictions and misinformation detectors. We discuss the implications of our findings for NLP research and propose future directions to mitigate unfairness.
Measuring Social Biases in Grounded Vision and Language Embeddings
We generalize the notion of social biases from language embeddings to grounded vision and language embeddings. Biases are present in grounded embeddings, and indeed seem to be equally or more significant than for ungrounded embeddings. This is despite the fact that vision and language can suffer from different biases, which one might hope could attenuate the biases in both. Multiple ways exist to generalize metrics measuring bias in word embeddings to this new setting. We introduce the space of generalizations (Grounded-WEAT and Grounded-SEAT) and demonstrate that three generalizations answer different yet important questions about how biases, language, and vision interact. These metrics are used on a new dataset, the first for grounded bias, created by augmenting extending standard linguistic bias benchmarks with 10,228 images from COCO, Conceptual Captions, and Google Images. Dataset construction is challenging because vision datasets are themselves very biased. The presence of these biases in systems will begin to have real-world consequences as they are deployed, making carefully measuring bias and then mitigating it critical to building a fair society.
Image Representations Learned With Unsupervised Pre-Training Contain Human-like Biases
Recent advances in machine learning leverage massive datasets of unlabeled images from the web to learn general-purpose image representations for tasks from image classification to face recognition. But do unsupervised computer vision models automatically learn implicit patterns and embed social biases that could have harmful downstream effects? We develop a novel method for quantifying biased associations between representations of social concepts and attributes in images. We find that state-of-the-art unsupervised models trained on ImageNet, a popular benchmark image dataset curated from internet images, automatically learn racial, gender, and intersectional biases. We replicate 8 previously documented human biases from social psychology, from the innocuous, as with insects and flowers, to the potentially harmful, as with race and gender. Our results closely match three hypotheses about intersectional bias from social psychology. For the first time in unsupervised computer vision, we also quantify implicit human biases about weight, disabilities, and several ethnicities. When compared with statistical patterns in online image datasets, our findings suggest that machine learning models can automatically learn bias from the way people are stereotypically portrayed on the web.
StereoSet: Measuring stereotypical bias in pretrained language models
A stereotype is an over-generalized belief about a particular group of people, e.g., Asians are good at math or Asians are bad drivers. Such beliefs (biases) are known to hurt target groups. Since pretrained language models are trained on large real world data, they are known to capture stereotypical biases. In order to assess the adverse effects of these models, it is important to quantify the bias captured in them. Existing literature on quantifying bias evaluates pretrained language models on a small set of artificially constructed bias-assessing sentences. We present StereoSet, a large-scale natural dataset in English to measure stereotypical biases in four domains: gender, profession, race, and religion. We evaluate popular models like BERT, GPT-2, RoBERTa, and XLNet on our dataset and show that these models exhibit strong stereotypical biases. We also present a leaderboard with a hidden test set to track the bias of future language models at https://stereoset.mit.edu
Social Bias Probing: Fairness Benchmarking for Language Models
While the impact of social biases in language models has been recognized, prior methods for bias evaluation have been limited to binary association tests on small datasets, limiting our understanding of bias complexities. This paper proposes a novel framework for probing language models for social biases by assessing disparate treatment, which involves treating individuals differently according to their affiliation with a sensitive demographic group. We curate SoFa, a large-scale benchmark designed to address the limitations of existing fairness collections. SoFa expands the analysis beyond the binary comparison of stereotypical versus anti-stereotypical identities to include a diverse range of identities and stereotypes. Comparing our methodology with existing benchmarks, we reveal that biases within language models are more nuanced than acknowledged, indicating a broader scope of encoded biases than previously recognized. Benchmarking LMs on SoFa, we expose how identities expressing different religions lead to the most pronounced disparate treatments across all models. Finally, our findings indicate that real-life adversities faced by various groups such as women and people with disabilities are mirrored in the behavior of these models.
COBIAS: Contextual Reliability in Bias Assessment
Large Language Models (LLMs) are trained on extensive web corpora, which enable them to understand and generate human-like text. However, this training process also results in inherent biases within the models. These biases arise from web data's diverse and often uncurated nature, containing various stereotypes and prejudices. Previous works on debiasing models rely on benchmark datasets to measure their method's performance. However, these datasets suffer from several pitfalls due to the highly subjective understanding of bias, highlighting a critical need for contextual exploration. We propose understanding the context of inputs by considering the diverse situations in which they may arise. Our contribution is two-fold: (i) we augment 2,291 stereotyped statements from two existing bias-benchmark datasets with points for adding context; (ii) we develop the Context-Oriented Bias Indicator and Assessment Score (COBIAS) to assess a statement's contextual reliability in measuring bias. Our metric aligns with human judgment on contextual reliability of statements (Spearman's rho = 0.65, p = 3.4 * 10^{-60}) and can be used to create reliable datasets, which would assist bias mitigation works.
Measuring Implicit Bias in Explicitly Unbiased Large Language Models
Large language models (LLMs) can pass explicit social bias tests but still harbor implicit biases, similar to humans who endorse egalitarian beliefs yet exhibit subtle biases. Measuring such implicit biases can be a challenge: as LLMs become increasingly proprietary, it may not be possible to access their embeddings and apply existing bias measures; furthermore, implicit biases are primarily a concern if they affect the actual decisions that these systems make. We address both challenges by introducing two new measures of bias: LLM Implicit Bias, a prompt-based method for revealing implicit bias; and LLM Decision Bias, a strategy to detect subtle discrimination in decision-making tasks. Both measures are based on psychological research: LLM Implicit Bias adapts the Implicit Association Test, widely used to study the automatic associations between concepts held in human minds; and LLM Decision Bias operationalizes psychological results indicating that relative evaluations between two candidates, not absolute evaluations assessing each independently, are more diagnostic of implicit biases. Using these measures, we found pervasive stereotype biases mirroring those in society in 8 value-aligned models across 4 social categories (race, gender, religion, health) in 21 stereotypes (such as race and criminality, race and weapons, gender and science, age and negativity). Our prompt-based LLM Implicit Bias measure correlates with existing language model embedding-based bias methods, but better predicts downstream behaviors measured by LLM Decision Bias. These new prompt-based measures draw from psychology's long history of research into measuring stereotype biases based on purely observable behavior; they expose nuanced biases in proprietary value-aligned LLMs that appear unbiased according to standard benchmarks.
CEB: Compositional Evaluation Benchmark for Fairness in Large Language Models
As Large Language Models (LLMs) are increasingly deployed to handle various natural language processing (NLP) tasks, concerns regarding the potential negative societal impacts of LLM-generated content have also arisen. To evaluate the biases exhibited by LLMs, researchers have recently proposed a variety of datasets. However, existing bias evaluation efforts often focus on only a particular type of bias and employ inconsistent evaluation metrics, leading to difficulties in comparison across different datasets and LLMs. To address these limitations, we collect a variety of datasets designed for the bias evaluation of LLMs, and further propose CEB, a Compositional Evaluation Benchmark that covers different types of bias across different social groups and tasks. The curation of CEB is based on our newly proposed compositional taxonomy, which characterizes each dataset from three dimensions: bias types, social groups, and tasks. By combining the three dimensions, we develop a comprehensive evaluation strategy for the bias in LLMs. Our experiments demonstrate that the levels of bias vary across these dimensions, thereby providing guidance for the development of specific bias mitigation methods.
Assessing Social and Intersectional Biases in Contextualized Word Representations
Social bias in machine learning has drawn significant attention, with work ranging from demonstrations of bias in a multitude of applications, curating definitions of fairness for different contexts, to developing algorithms to mitigate bias. In natural language processing, gender bias has been shown to exist in context-free word embeddings. Recently, contextual word representations have outperformed word embeddings in several downstream NLP tasks. These word representations are conditioned on their context within a sentence, and can also be used to encode the entire sentence. In this paper, we analyze the extent to which state-of-the-art models for contextual word representations, such as BERT and GPT-2, encode biases with respect to gender, race, and intersectional identities. Towards this, we propose assessing bias at the contextual word level. This novel approach captures the contextual effects of bias missing in context-free word embeddings, yet avoids confounding effects that underestimate bias at the sentence encoding level. We demonstrate evidence of bias at the corpus level, find varying evidence of bias in embedding association tests, show in particular that racial bias is strongly encoded in contextual word models, and observe that bias effects for intersectional minorities are exacerbated beyond their constituent minority identities. Further, evaluating bias effects at the contextual word level captures biases that are not captured at the sentence level, confirming the need for our novel approach.
Measuring Bias in Contextualized Word Representations
Contextual word embeddings such as BERT have achieved state of the art performance in numerous NLP tasks. Since they are optimized to capture the statistical properties of training data, they tend to pick up on and amplify social stereotypes present in the data as well. In this study, we (1)~propose a template-based method to quantify bias in BERT; (2)~show that this method obtains more consistent results in capturing social biases than the traditional cosine based method; and (3)~conduct a case study, evaluating gender bias in a downstream task of Gender Pronoun Resolution. Although our case study focuses on gender bias, the proposed technique is generalizable to unveiling other biases, including in multiclass settings, such as racial and religious biases.
Bias in Generative AI
This study analyzed images generated by three popular generative artificial intelligence (AI) tools - Midjourney, Stable Diffusion, and DALLE 2 - representing various occupations to investigate potential bias in AI generators. Our analysis revealed two overarching areas of concern in these AI generators, including (1) systematic gender and racial biases, and (2) subtle biases in facial expressions and appearances. Firstly, we found that all three AI generators exhibited bias against women and African Americans. Moreover, we found that the evident gender and racial biases uncovered in our analysis were even more pronounced than the status quo when compared to labor force statistics or Google images, intensifying the harmful biases we are actively striving to rectify in our society. Secondly, our study uncovered more nuanced prejudices in the portrayal of emotions and appearances. For example, women were depicted as younger with more smiles and happiness, while men were depicted as older with more neutral expressions and anger, posing a risk that generative AI models may unintentionally depict women as more submissive and less competent than men. Such nuanced biases, by their less overt nature, might be more problematic as they can permeate perceptions unconsciously and may be more difficult to rectify. Although the extent of bias varied depending on the model, the direction of bias remained consistent in both commercial and open-source AI generators. As these tools become commonplace, our study highlights the urgency to identify and mitigate various biases in generative AI, reinforcing the commitment to ensuring that AI technologies benefit all of humanity for a more inclusive future.
An Analysis of Social Biases Present in BERT Variants Across Multiple Languages
Although large pre-trained language models have achieved great success in many NLP tasks, it has been shown that they reflect human biases from their pre-training corpora. This bias may lead to undesirable outcomes when these models are applied in real-world settings. In this paper, we investigate the bias present in monolingual BERT models across a diverse set of languages (English, Greek, and Persian). While recent research has mostly focused on gender-related biases, we analyze religious and ethnic biases as well and propose a template-based method to measure any kind of bias, based on sentence pseudo-likelihood, that can handle morphologically complex languages with gender-based adjective declensions. We analyze each monolingual model via this method and visualize cultural similarities and differences across different dimensions of bias. Ultimately, we conclude that current methods of probing for bias are highly language-dependent, necessitating cultural insights regarding the unique ways bias is expressed in each language and culture (e.g. through coded language, synecdoche, and other similar linguistic concepts). We also hypothesize that higher measured social biases in the non-English BERT models correlate with user-generated content in their training.
Quantifying Bias in Text-to-Image Generative Models
Bias in text-to-image (T2I) models can propagate unfair social representations and may be used to aggressively market ideas or push controversial agendas. Existing T2I model bias evaluation methods only focus on social biases. We look beyond that and instead propose an evaluation methodology to quantify general biases in T2I generative models, without any preconceived notions. We assess four state-of-the-art T2I models and compare their baseline bias characteristics to their respective variants (two for each), where certain biases have been intentionally induced. We propose three evaluation metrics to assess model biases including: (i) Distribution bias, (ii) Jaccard hallucination and (iii) Generative miss-rate. We conduct two evaluation studies, modelling biases under general, and task-oriented conditions, using a marketing scenario as the domain for the latter. We also quantify social biases to compare our findings to related works. Finally, our methodology is transferred to evaluate captioned-image datasets and measure their bias. Our approach is objective, domain-agnostic and consistently measures different forms of T2I model biases. We have developed a web application and practical implementation of what has been proposed in this work, which is at https://huggingface.co/spaces/JVice/try-before-you-bias. A video series with demonstrations is available at https://www.youtube.com/channel/UCk-0xyUyT0MSd_hkp4jQt1Q
Bias and Fairness in Large Language Models: A Survey
Rapid advancements of large language models (LLMs) have enabled the processing, understanding, and generation of human-like text, with increasing integration into systems that touch our social sphere. Despite this success, these models can learn, perpetuate, and amplify harmful social biases. In this paper, we present a comprehensive survey of bias evaluation and mitigation techniques for LLMs. We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing, defining distinct facets of harm and introducing several desiderata to operationalize fairness for LLMs. We then unify the literature by proposing three intuitive taxonomies, two for bias evaluation, namely metrics and datasets, and one for mitigation. Our first taxonomy of metrics for bias evaluation disambiguates the relationship between metrics and evaluation datasets, and organizes metrics by the different levels at which they operate in a model: embeddings, probabilities, and generated text. Our second taxonomy of datasets for bias evaluation categorizes datasets by their structure as counterfactual inputs or prompts, and identifies the targeted harms and social groups; we also release a consolidation of publicly-available datasets for improved access. Our third taxonomy of techniques for bias mitigation classifies methods by their intervention during pre-processing, in-training, intra-processing, and post-processing, with granular subcategories that elucidate research trends. Finally, we identify open problems and challenges for future work. Synthesizing a wide range of recent research, we aim to provide a clear guide of the existing literature that empowers researchers and practitioners to better understand and prevent the propagation of bias in LLMs.
What the Harm? Quantifying the Tangible Impact of Gender Bias in Machine Translation with a Human-centered Study
Gender bias in machine translation (MT) is recognized as an issue that can harm people and society. And yet, advancements in the field rarely involve people, the final MT users, or inform how they might be impacted by biased technologies. Current evaluations are often restricted to automatic methods, which offer an opaque estimate of what the downstream impact of gender disparities might be. We conduct an extensive human-centered study to examine if and to what extent bias in MT brings harms with tangible costs, such as quality of service gaps across women and men. To this aim, we collect behavioral data from 90 participants, who post-edited MT outputs to ensure correct gender translation. Across multiple datasets, languages, and types of users, our study shows that feminine post-editing demands significantly more technical and temporal effort, also corresponding to higher financial costs. Existing bias measurements, however, fail to reflect the found disparities. Our findings advocate for human-centered approaches that can inform the societal impact of bias.
Nuanced Metrics for Measuring Unintended Bias with Real Data for Text Classification
Unintended bias in Machine Learning can manifest as systemic differences in performance for different demographic groups, potentially compounding existing challenges to fairness in society at large. In this paper, we introduce a suite of threshold-agnostic metrics that provide a nuanced view of this unintended bias, by considering the various ways that a classifier's score distribution can vary across designated groups. We also introduce a large new test set of online comments with crowd-sourced annotations for identity references. We use this to show how our metrics can be used to find new and potentially subtle unintended bias in existing public models.
Exploring Social Bias in Downstream Applications of Text-to-Image Foundation Models
Text-to-image diffusion models have been adopted into key commercial workflows, such as art generation and image editing. Characterising the implicit social biases they exhibit, such as gender and racial stereotypes, is a necessary first step in avoiding discriminatory outcomes. While existing studies on social bias focus on image generation, the biases exhibited in alternate applications of diffusion-based foundation models remain under-explored. We propose methods that use synthetic images to probe two applications of diffusion models, image editing and classification, for social bias. Using our methodology, we uncover meaningful and significant inter-sectional social biases in Stable Diffusion, a state-of-the-art open-source text-to-image model. Our findings caution against the uninformed adoption of text-to-image foundation models for downstream tasks and services.
Semantics derived automatically from language corpora contain human-like biases
Artificial intelligence and machine learning are in a period of astounding growth. However, there are concerns that these technologies may be used, either with or without intention, to perpetuate the prejudice and unfairness that unfortunately characterizes many human institutions. Here we show for the first time that human-like semantic biases result from the application of standard machine learning to ordinary language---the same sort of language humans are exposed to every day. We replicate a spectrum of standard human biases as exposed by the Implicit Association Test and other well-known psychological studies. We replicate these using a widely used, purely statistical machine-learning model---namely, the GloVe word embedding---trained on a corpus of text from the Web. Our results indicate that language itself contains recoverable and accurate imprints of our historic biases, whether these are morally neutral as towards insects or flowers, problematic as towards race or gender, or even simply veridical, reflecting the {\em status quo} for the distribution of gender with respect to careers or first names. These regularities are captured by machine learning along with the rest of semantics. In addition to our empirical findings concerning language, we also contribute new methods for evaluating bias in text, the Word Embedding Association Test (WEAT) and the Word Embedding Factual Association Test (WEFAT). Our results have implications not only for AI and machine learning, but also for the fields of psychology, sociology, and human ethics, since they raise the possibility that mere exposure to everyday language can account for the biases we replicate here.
Social Biases through the Text-to-Image Generation Lens
Text-to-Image (T2I) generation is enabling new applications that support creators, designers, and general end users of productivity software by generating illustrative content with high photorealism starting from a given descriptive text as a prompt. Such models are however trained on massive amounts of web data, which surfaces the peril of potential harmful biases that may leak in the generation process itself. In this paper, we take a multi-dimensional approach to studying and quantifying common social biases as reflected in the generated images, by focusing on how occupations, personality traits, and everyday situations are depicted across representations of (perceived) gender, age, race, and geographical location. Through an extensive set of both automated and human evaluation experiments we present findings for two popular T2I models: DALLE-v2 and Stable Diffusion. Our results reveal that there exist severe occupational biases of neutral prompts majorly excluding groups of people from results for both models. Such biases can get mitigated by increasing the amount of specification in the prompt itself, although the prompting mitigation will not address discrepancies in image quality or other usages of the model or its representations in other scenarios. Further, we observe personality traits being associated with only a limited set of people at the intersection of race, gender, and age. Finally, an analysis of geographical location representations on everyday situations (e.g., park, food, weddings) shows that for most situations, images generated through default location-neutral prompts are closer and more similar to images generated for locations of United States and Germany.
Investigating Subtler Biases in LLMs: Ageism, Beauty, Institutional, and Nationality Bias in Generative Models
LLMs are increasingly powerful and widely used to assist users in a variety of tasks. This use risks the introduction of LLM biases to consequential decisions such as job hiring, human performance evaluation, and criminal sentencing. Bias in NLP systems along the lines of gender and ethnicity has been widely studied, especially for specific stereotypes (e.g., Asians are good at math). In this paper, we investigate bias along less-studied but still consequential, dimensions, such as age and beauty, measuring subtler correlated decisions that LLMs make between social groups and unrelated positive and negative attributes. We ask whether LLMs hold wide-reaching biases of positive or negative sentiment for specific social groups similar to the ``what is beautiful is good'' bias found in people in experimental psychology. We introduce a template-generated dataset of sentence completion tasks that asks the model to select the most appropriate attribute to complete an evaluative statement about a person described as a member of a specific social group. We also reverse the completion task to select the social group based on an attribute. We report the correlations that we find for 4 cutting-edge LLMs. This dataset can be used as a benchmark to evaluate progress in more generalized biases and the templating technique can be used to expand the benchmark with minimal additional human annotation.
Model-Agnostic Gender Debiased Image Captioning
Image captioning models are known to perpetuate and amplify harmful societal bias in the training set. In this work, we aim to mitigate such gender bias in image captioning models. While prior work has addressed this problem by forcing models to focus on people to reduce gender misclassification, it conversely generates gender-stereotypical words at the expense of predicting the correct gender. From this observation, we hypothesize that there are two types of gender bias affecting image captioning models: 1) bias that exploits context to predict gender, and 2) bias in the probability of generating certain (often stereotypical) words because of gender. To mitigate both types of gender biases, we propose a framework, called LIBRA, that learns from synthetically biased samples to decrease both types of biases, correcting gender misclassification and changing gender-stereotypical words to more neutral ones.
Unveiling the Hidden Agenda: Biases in News Reporting and Consumption
One of the most pressing challenges in the digital media landscape is understanding the impact of biases on the news sources that people rely on for information. Biased news can have significant and far-reaching consequences, influencing our perspectives and shaping the decisions we make, potentially endangering the public and individual well-being. With the advent of the Internet and social media, discussions have moved online, making it easier to disseminate both accurate and inaccurate information. To combat mis- and dis-information, many have begun to evaluate the reliability of news sources, but these assessments often only examine the validity of the news (narrative bias) and neglect other types of biases, such as the deliberate selection of events to favor certain perspectives (selection bias). This paper aims to investigate these biases in various news sources and their correlation with third-party evaluations of reliability, engagement, and online audiences. Using machine learning to classify content, we build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases. Our results show that the source classification provided by third-party organizations closely follows the narrative bias dimension, while it is much less accurate in identifying the selection bias. Moreover, we found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions. Lastly, analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.
How Inclusive Are Wikipedia's Hyperlinks in Articles Covering Polarizing Topics?
Wikipedia relies on an extensive review process to verify that the content of each individual page is unbiased and presents a neutral point of view. Less attention has been paid to possible biases in the hyperlink structure of Wikipedia, which has a significant influence on the user's exploration process when visiting more than one page. The evaluation of hyperlink bias is challenging because it depends on the global view rather than the text of individual pages. In this paper, we focus on the influence of the interconnect topology between articles describing complementary aspects of polarizing topics. We introduce a novel measure of exposure to diverse information to quantify users' exposure to different aspects of a topic throughout an entire surfing session, rather than just one click ahead. We apply this measure to six polarizing topics (e.g., gun control and gun right), and we identify cases in which the network topology significantly limits the exposure of users to diverse information on the topic, encouraging users to remain in a knowledge bubble. Our findings demonstrate the importance of evaluating Wikipedia's network structure in addition to the extensive review of individual articles.
Cyberbullying Detection with Fairness Constraints
Cyberbullying is a widespread adverse phenomenon among online social interactions in today's digital society. While numerous computational studies focus on enhancing the cyberbullying detection performance of machine learning algorithms, proposed models tend to carry and reinforce unintended social biases. In this study, we try to answer the research question of "Can we mitigate the unintended bias of cyberbullying detection models by guiding the model training with fairness constraints?". For this purpose, we propose a model training scheme that can employ fairness constraints and validate our approach with different datasets. We demonstrate that various types of unintended biases can be successfully mitigated without impairing the model quality. We believe our work contributes to the pursuit of unbiased, transparent, and ethical machine learning solutions for cyber-social health.
Few-shot Instruction Prompts for Pretrained Language Models to Detect Social Biases
Detecting social bias in text is challenging due to nuance, subjectivity, and difficulty in obtaining good quality labeled datasets at scale, especially given the evolving nature of social biases and society. To address these challenges, we propose a few-shot instruction-based method for prompting pre-trained language models (LMs). We select a few class-balanced exemplars from a small support repository that are closest to the query to be labeled in the embedding space. We then provide the LM with instruction that consists of this subset of labeled exemplars, the query text to be classified, a definition of bias, and prompt it to make a decision. We demonstrate that large LMs used in a few-shot context can detect different types of fine-grained biases with similar and sometimes superior accuracy to fine-tuned models. We observe that the largest 530B parameter model is significantly more effective in detecting social bias compared to smaller models (achieving at least 13% improvement in AUC metric compared to other models). It also maintains a high AUC (dropping less than 2%) when the labeled repository is reduced to as few as 100 samples. Large pretrained language models thus make it easier and quicker to build new bias detectors.
Analyzing Quality, Bias, and Performance in Text-to-Image Generative Models
Advances in generative models have led to significant interest in image synthesis, demonstrating the ability to generate high-quality images for a diverse range of text prompts. Despite this progress, most studies ignore the presence of bias. In this paper, we examine several text-to-image models not only by qualitatively assessing their performance in generating accurate images of human faces, groups, and specified numbers of objects but also by presenting a social bias analysis. As expected, models with larger capacity generate higher-quality images. However, we also document the inherent gender or social biases these models possess, offering a more complete understanding of their impact and limitations.
Systematic Biases in LLM Simulations of Debates
Recent advancements in natural language processing, especially the emergence of Large Language Models (LLMs), have opened exciting possibilities for constructing computational simulations designed to replicate human behavior accurately. However, LLMs are complex statistical learners without straightforward deductive rules, making them prone to unexpected behaviors. In this study, we highlight the limitations of LLMs in simulating human interactions, particularly focusing on LLMs' ability to simulate political debates. Our findings indicate a tendency for LLM agents to conform to the model's inherent social biases despite being directed to debate from certain political perspectives. This tendency results in behavioral patterns that seem to deviate from well-established social dynamics among humans. We reinforce these observations using an automatic self-fine-tuning method, which enables us to manipulate the biases within the LLM and demonstrate that agents subsequently align with the altered biases. These results underscore the need for further research to develop methods that help agents overcome these biases, a critical step toward creating more realistic simulations.
BOLD: Dataset and Metrics for Measuring Biases in Open-Ended Language Generation
Recent advances in deep learning techniques have enabled machines to generate cohesive open-ended text when prompted with a sequence of words as context. While these models now empower many downstream applications from conversation bots to automatic storytelling, they have been shown to generate texts that exhibit social biases. To systematically study and benchmark social biases in open-ended language generation, we introduce the Bias in Open-Ended Language Generation Dataset (BOLD), a large-scale dataset that consists of 23,679 English text generation prompts for bias benchmarking across five domains: profession, gender, race, religion, and political ideology. We also propose new automated metrics for toxicity, psycholinguistic norms, and text gender polarity to measure social biases in open-ended text generation from multiple angles. An examination of text generated from three popular language models reveals that the majority of these models exhibit a larger social bias than human-written Wikipedia text across all domains. With these results we highlight the need to benchmark biases in open-ended language generation and caution users of language generation models on downstream tasks to be cognizant of these embedded prejudices.
GPT is Not an Annotator: The Necessity of Human Annotation in Fairness Benchmark Construction
Social biases in LLMs are usually measured via bias benchmark datasets. Current benchmarks have limitations in scope, grounding, quality, and human effort required. Previous work has shown success with a community-sourced, rather than crowd-sourced, approach to benchmark development. However, this work still required considerable effort from annotators with relevant lived experience. This paper explores whether an LLM (specifically, GPT-3.5-Turbo) can assist with the task of developing a bias benchmark dataset from responses to an open-ended community survey. We also extend the previous work to a new community and set of biases: the Jewish community and antisemitism. Our analysis shows that GPT-3.5-Turbo has poor performance on this annotation task and produces unacceptable quality issues in its output. Thus, we conclude that GPT-3.5-Turbo is not an appropriate substitute for human annotation in sensitive tasks related to social biases, and that its use actually negates many of the benefits of community-sourcing bias benchmarks.
Moral Foundations of Large Language Models
Moral foundations theory (MFT) is a psychological assessment tool that decomposes human moral reasoning into five factors, including care/harm, liberty/oppression, and sanctity/degradation (Graham et al., 2009). People vary in the weight they place on these dimensions when making moral decisions, in part due to their cultural upbringing and political ideology. As large language models (LLMs) are trained on datasets collected from the internet, they may reflect the biases that are present in such corpora. This paper uses MFT as a lens to analyze whether popular LLMs have acquired a bias towards a particular set of moral values. We analyze known LLMs and find they exhibit particular moral foundations, and show how these relate to human moral foundations and political affiliations. We also measure the consistency of these biases, or whether they vary strongly depending on the context of how the model is prompted. Finally, we show that we can adversarially select prompts that encourage the moral to exhibit a particular set of moral foundations, and that this can affect the model's behavior on downstream tasks. These findings help illustrate the potential risks and unintended consequences of LLMs assuming a particular moral stance.
KoSBi: A Dataset for Mitigating Social Bias Risks Towards Safer Large Language Model Application
Large language models (LLMs) learn not only natural text generation abilities but also social biases against different demographic groups from real-world data. This poses a critical risk when deploying LLM-based applications. Existing research and resources are not readily applicable in South Korea due to the differences in language and culture, both of which significantly affect the biases and targeted demographic groups. This limitation requires localized social bias datasets to ensure the safe and effective deployment of LLMs. To this end, we present KO SB I, a new social bias dataset of 34k pairs of contexts and sentences in Korean covering 72 demographic groups in 15 categories. We find that through filtering-based moderation, social biases in generated content can be reduced by 16.47%p on average for HyperCLOVA (30B and 82B), and GPT-3.
Bias Out-of-the-Box: An Empirical Analysis of Intersectional Occupational Biases in Popular Generative Language Models
The capabilities of natural language models trained on large-scale data have increased immensely over the past few years. Open source libraries such as HuggingFace have made these models easily available and accessible. While prior research has identified biases in large language models, this paper considers biases contained in the most popular versions of these models when applied `out-of-the-box' for downstream tasks. We focus on generative language models as they are well-suited for extracting biases inherited from training data. Specifically, we conduct an in-depth analysis of GPT-2, which is the most downloaded text generation model on HuggingFace, with over half a million downloads per month. We assess biases related to occupational associations for different protected categories by intersecting gender with religion, sexuality, ethnicity, political affiliation, and continental name origin. Using a template-based data collection pipeline, we collect 396K sentence completions made by GPT-2 and find: (i) The machine-predicted jobs are less diverse and more stereotypical for women than for men, especially for intersections; (ii) Intersectional interactions are highly relevant for occupational associations, which we quantify by fitting 262 logistic models; (iii) For most occupations, GPT-2 reflects the skewed gender and ethnicity distribution found in US Labor Bureau data, and even pulls the societally-skewed distribution towards gender parity in cases where its predictions deviate from real labor market observations. This raises the normative question of what language models should learn - whether they should reflect or correct for existing inequalities.
T2IAT: Measuring Valence and Stereotypical Biases in Text-to-Image Generation
Warning: This paper contains several contents that may be toxic, harmful, or offensive. In the last few years, text-to-image generative models have gained remarkable success in generating images with unprecedented quality accompanied by a breakthrough of inference speed. Despite their rapid progress, human biases that manifest in the training examples, particularly with regard to common stereotypical biases, like gender and skin tone, still have been found in these generative models. In this work, we seek to measure more complex human biases exist in the task of text-to-image generations. Inspired by the well-known Implicit Association Test (IAT) from social psychology, we propose a novel Text-to-Image Association Test (T2IAT) framework that quantifies the implicit stereotypes between concepts and valence, and those in the images. We replicate the previously documented bias tests on generative models, including morally neutral tests on flowers and insects as well as demographic stereotypical tests on diverse social attributes. The results of these experiments demonstrate the presence of complex stereotypical behaviors in image generations.
A Comprehensive Survey of Bias in LLMs: Current Landscape and Future Directions
Large Language Models(LLMs) have revolutionized various applications in natural language processing (NLP) by providing unprecedented text generation, translation, and comprehension capabilities. However, their widespread deployment has brought to light significant concerns regarding biases embedded within these models. This paper presents a comprehensive survey of biases in LLMs, aiming to provide an extensive review of the types, sources, impacts, and mitigation strategies related to these biases. We systematically categorize biases into several dimensions. Our survey synthesizes current research findings and discusses the implications of biases in real-world applications. Additionally, we critically assess existing bias mitigation techniques and propose future research directions to enhance fairness and equity in LLMs. This survey serves as a foundational resource for researchers, practitioners, and policymakers concerned with addressing and understanding biases in LLMs.
Navigating News Narratives: A Media Bias Analysis Dataset
The proliferation of biased news narratives across various media platforms has become a prominent challenge, influencing public opinion on critical topics like politics, health, and climate change. This paper introduces the "Navigating News Narratives: A Media Bias Analysis Dataset", a comprehensive dataset to address the urgent need for tools to detect and analyze media bias. This dataset encompasses a broad spectrum of biases, making it a unique and valuable asset in the field of media studies and artificial intelligence. The dataset is available at https://huggingface.co/datasets/newsmediabias/news-bias-full-data.
The Woman Worked as a Babysitter: On Biases in Language Generation
We present a systematic study of biases in natural language generation (NLG) by analyzing text generated from prompts that contain mentions of different demographic groups. In this work, we introduce the notion of the regard towards a demographic, use the varying levels of regard towards different demographics as a defining metric for bias in NLG, and analyze the extent to which sentiment scores are a relevant proxy metric for regard. To this end, we collect strategically-generated text from language models and manually annotate the text with both sentiment and regard scores. Additionally, we build an automatic regard classifier through transfer learning, so that we can analyze biases in unseen text. Together, these methods reveal the extent of the biased nature of language model generations. Our analysis provides a study of biases in NLG, bias metrics and correlated human judgments, and empirical evidence on the usefulness of our annotated dataset.
Emerging Challenges in Personalized Medicine: Assessing Demographic Effects on Biomedical Question Answering Systems
State-of-the-art question answering (QA) models exhibit a variety of social biases (e.g., with respect to sex or race), generally explained by similar issues in their training data. However, what has been overlooked so far is that in the critical domain of biomedicine, any unjustified change in model output due to patient demographics is problematic: it results in the unfair treatment of patients. Selecting only questions on biomedical topics whose answers do not depend on ethnicity, sex, or sexual orientation, we ask the following research questions: (RQ1) Do the answers of QA models change when being provided with irrelevant demographic information? (RQ2) Does the answer of RQ1 differ between knowledge graph (KG)-grounded and text-based QA systems? We find that irrelevant demographic information change up to 15% of the answers of a KG-grounded system and up to 23% of the answers of a text-based system, including changes that affect accuracy. We conclude that unjustified answer changes caused by patient demographics are a frequent phenomenon, which raises fairness concerns and should be paid more attention to.
Evaluating Gender Bias in Natural Language Inference
Gender-bias stereotypes have recently raised significant ethical concerns in natural language processing. However, progress in detection and evaluation of gender bias in natural language understanding through inference is limited and requires further investigation. In this work, we propose an evaluation methodology to measure these biases by constructing a challenge task that involves pairing gender-neutral premises against a gender-specific hypothesis. We use our challenge task to investigate state-of-the-art NLI models on the presence of gender stereotypes using occupations. Our findings suggest that three models (BERT, RoBERTa, BART) trained on MNLI and SNLI datasets are significantly prone to gender-induced prediction errors. We also find that debiasing techniques such as augmenting the training dataset to ensure a gender-balanced dataset can help reduce such bias in certain cases.
Directional Bias Amplification
Mitigating bias in machine learning systems requires refining our understanding of bias propagation pathways: from societal structures to large-scale data to trained models to impact on society. In this work, we focus on one aspect of the problem, namely bias amplification: the tendency of models to amplify the biases present in the data they are trained on. A metric for measuring bias amplification was introduced in the seminal work by Zhao et al. (2017); however, as we demonstrate, this metric suffers from a number of shortcomings including conflating different types of bias amplification and failing to account for varying base rates of protected attributes. We introduce and analyze a new, decoupled metric for measuring bias amplification, BiasAmp_{rightarrow} (Directional Bias Amplification). We thoroughly analyze and discuss both the technical assumptions and normative implications of this metric. We provide suggestions about its measurement by cautioning against predicting sensitive attributes, encouraging the use of confidence intervals due to fluctuations in the fairness of models across runs, and discussing the limitations of what this metric captures. Throughout this paper, we work to provide an interrogative look at the technical measurement of bias amplification, guided by our normative ideas of what we want it to encompass. Code is located at https://github.com/princetonvisualai/directional-bias-amp
What Do Llamas Really Think? Revealing Preference Biases in Language Model Representations
Do large language models (LLMs) exhibit sociodemographic biases, even when they decline to respond? To bypass their refusal to "speak," we study this research question by probing contextualized embeddings and exploring whether this bias is encoded in its latent representations. We propose a logistic Bradley-Terry probe which predicts word pair preferences of LLMs from the words' hidden vectors. We first validate our probe on three pair preference tasks and thirteen LLMs, where we outperform the word embedding association test (WEAT), a standard approach in testing for implicit association, by a relative 27% in error rate. We also find that word pair preferences are best represented in the middle layers. Next, we transfer probes trained on harmless tasks (e.g., pick the larger number) to controversial ones (compare ethnicities) to examine biases in nationality, politics, religion, and gender. We observe substantial bias for all target classes: for instance, the Mistral model implicitly prefers Europe to Africa, Christianity to Judaism, and left-wing to right-wing politics, despite declining to answer. This suggests that instruction fine-tuning does not necessarily debias contextualized embeddings. Our codebase is at https://github.com/castorini/biasprobe.
A Framework to Assess (Dis)agreement Among Diverse Rater Groups
Recent advancements in conversational AI have created an urgent need for safety guardrails that prevent users from being exposed to offensive and dangerous content. Much of this work relies on human ratings and feedback, but does not account for the fact that perceptions of offense and safety are inherently subjective and that there may be systematic disagreements between raters that align with their socio-demographic identities. Instead, current machine learning approaches largely ignore rater subjectivity and use gold standards that obscure disagreements (e.g., through majority voting). In order to better understand the socio-cultural leanings of such tasks, we propose a comprehensive disagreement analysis framework to measure systematic diversity in perspectives among different rater subgroups. We then demonstrate its utility by applying this framework to a dataset of human-chatbot conversations rated by a demographically diverse pool of raters. Our analysis reveals specific rater groups that have more diverse perspectives than the rest, and informs demographic axes that are crucial to consider for safety annotations.
Q_{bias} -- A Dataset on Media Bias in Search Queries and Query Suggestions
This publication describes the motivation and generation of Q_{bias}, a large dataset of Google and Bing search queries, a scraping tool and dataset for biased news articles, as well as language models for the investigation of bias in online search. Web search engines are a major factor and trusted source in information search, especially in the political domain. However, biased information can influence opinion formation and lead to biased opinions. To interact with search engines, users formulate search queries and interact with search query suggestions provided by the search engines. A lack of datasets on search queries inhibits research on the subject. We use Q_{bias} to evaluate different approaches to fine-tuning transformer-based language models with the goal of producing models capable of biasing text with left and right political stance. Additionally to this work we provided datasets and language models for biasing texts that allow further research on bias in online information search.
GRADIEND: Monosemantic Feature Learning within Neural Networks Applied to Gender Debiasing of Transformer Models
AI systems frequently exhibit and amplify social biases, including gender bias, leading to harmful consequences in critical areas. This study introduces a novel encoder-decoder approach that leverages model gradients to learn a single monosemantic feature neuron encoding gender information. We show that our method can be used to debias transformer-based language models, while maintaining other capabilities. We demonstrate the effectiveness of our approach across multiple encoder-only based models and highlight its potential for broader applications.
Bias Runs Deep: Implicit Reasoning Biases in Persona-Assigned LLMs
Recent works have showcased the ability of LLMs to embody diverse personas in their responses, exemplified by prompts like 'You are Yoda. Explain the Theory of Relativity.' While this ability allows personalization of LLMs and enables human behavior simulation, its effect on LLMs' capabilities remains unclear. To fill this gap, we present the first extensive study of the unintended side-effects of persona assignment on the ability of LLMs to perform basic reasoning tasks. Our study covers 24 reasoning datasets, 4 LLMs, and 19 diverse personas (e.g. an Asian person) spanning 5 socio-demographic groups. Our experiments unveil that LLMs harbor deep rooted bias against various socio-demographics underneath a veneer of fairness. While they overtly reject stereotypes when explicitly asked ('Are Black people less skilled at mathematics?'), they manifest stereotypical and erroneous presumptions when asked to answer questions while adopting a persona. These can be observed as abstentions in responses, e.g., 'As a Black person, I can't answer this question as it requires math knowledge', and generally result in a substantial performance drop. Our experiments with ChatGPT-3.5 show that this bias is ubiquitous - 80% of our personas demonstrate bias; it is significant - some datasets show performance drops of 70%+; and can be especially harmful for certain groups - some personas suffer statistically significant drops on 80%+ of the datasets. Overall, all 4 LLMs exhibit this bias to varying extents, with GPT-4-Turbo showing the least but still a problematic amount of bias (evident in 42% of the personas). Further analysis shows that these persona-induced errors can be hard-to-discern and hard-to-avoid. Our findings serve as a cautionary tale that the practice of assigning personas to LLMs - a trend on the rise - can surface their deep-rooted biases and have unforeseeable and detrimental side-effects.
Perturbation Augmentation for Fairer NLP
Unwanted and often harmful social biases are becoming ever more salient in NLP research, affecting both models and datasets. In this work, we ask whether training on demographically perturbed data leads to fairer language models. We collect a large dataset of human annotated text perturbations and train a neural perturbation model, which we show outperforms heuristic alternatives. We find that (i) language models (LMs) pre-trained on demographically perturbed corpora are typically more fair, and (ii) LMs finetuned on perturbed GLUE datasets exhibit less demographic bias on downstream tasks, and (iii) fairness improvements do not come at the expense of performance on downstream tasks. Lastly, we discuss outstanding questions about how best to evaluate the (un)fairness of large language models. We hope that this exploration of neural demographic perturbation will help drive more improvement towards fairer NLP.
Multi-Dimensional Gender Bias Classification
Machine learning models are trained to find patterns in data. NLP models can inadvertently learn socially undesirable patterns when training on gender biased text. In this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions: bias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker. Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information. In addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites. Distinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers. We show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models, detecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness.
Bridging Fairness and Environmental Sustainability in Natural Language Processing
Fairness and environmental impact are important research directions for the sustainable development of artificial intelligence. However, while each topic is an active research area in natural language processing (NLP), there is a surprising lack of research on the interplay between the two fields. This lacuna is highly problematic, since there is increasing evidence that an exclusive focus on fairness can actually hinder environmental sustainability, and vice versa. In this work, we shed light on this crucial intersection in NLP by (1) investigating the efficiency of current fairness approaches through surveying example methods for reducing unfair stereotypical bias from the literature, and (2) evaluating a common technique to reduce energy consumption (and thus environmental impact) of English NLP models, knowledge distillation (KD), for its impact on fairness. In this case study, we evaluate the effect of important KD factors, including layer and dimensionality reduction, with respect to: (a) performance on the distillation task (natural language inference and semantic similarity prediction), and (b) multiple measures and dimensions of stereotypical bias (e.g., gender bias measured via the Word Embedding Association Test). Our results lead us to clarify current assumptions regarding the effect of KD on unfair bias: contrary to other findings, we show that KD can actually decrease model fairness.
Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings
Online texts -- across genres, registers, domains, and styles -- are riddled with human stereotypes, expressed in overt or subtle ways. Word embeddings, trained on these texts, perpetuate and amplify these stereotypes, and propagate biases to machine learning models that use word embeddings as features. In this work, we propose a method to debias word embeddings in multiclass settings such as race and religion, extending the work of (Bolukbasi et al., 2016) from the binary setting, such as binary gender. Next, we propose a novel methodology for the evaluation of multiclass debiasing. We demonstrate that our multiclass debiasing is robust and maintains the efficacy in standard NLP tasks.
Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting
We present a large-scale study of gender bias in occupation classification, a task where the use of machine learning may lead to negative outcomes on peoples' lives. We analyze the potential allocation harms that can result from semantic representation bias. To do so, we study the impact on occupation classification of including explicit gender indicators---such as first names and pronouns---in different semantic representations of online biographies. Additionally, we quantify the bias that remains when these indicators are "scrubbed," and describe proxy behavior that occurs in the absence of explicit gender indicators. As we demonstrate, differences in true positive rates between genders are correlated with existing gender imbalances in occupations, which may compound these imbalances.
Mitigating stereotypical biases in text to image generative systems
State-of-the-art generative text-to-image models are known to exhibit social biases and over-represent certain groups like people of perceived lighter skin tones and men in their outcomes. In this work, we propose a method to mitigate such biases and ensure that the outcomes are fair across different groups of people. We do this by finetuning text-to-image models on synthetic data that varies in perceived skin tones and genders constructed from diverse text prompts. These text prompts are constructed from multiplicative combinations of ethnicities, genders, professions, age groups, and so on, resulting in diverse synthetic data. Our diversity finetuned (DFT) model improves the group fairness metric by 150% for perceived skin tone and 97.7% for perceived gender. Compared to baselines, DFT models generate more people with perceived darker skin tone and more women. To foster open research, we will release all text prompts and code to generate training images.
NLPositionality: Characterizing Design Biases of Datasets and Models
Design biases in NLP systems, such as performance differences for different populations, often stem from their creator's positionality, i.e., views and lived experiences shaped by identity and background. Despite the prevalence and risks of design biases, they are hard to quantify because researcher, system, and dataset positionality is often unobserved. We introduce NLPositionality, a framework for characterizing design biases and quantifying the positionality of NLP datasets and models. Our framework continuously collects annotations from a diverse pool of volunteer participants on LabintheWild, and statistically quantifies alignment with dataset labels and model predictions. We apply NLPositionality to existing datasets and models for two tasks -- social acceptability and hate speech detection. To date, we have collected 16,299 annotations in over a year for 600 instances from 1,096 annotators across 87 countries. We find that datasets and models align predominantly with Western, White, college-educated, and younger populations. Additionally, certain groups, such as non-binary people and non-native English speakers, are further marginalized by datasets and models as they rank least in alignment across all tasks. Finally, we draw from prior literature to discuss how researchers can examine their own positionality and that of their datasets and models, opening the door for more inclusive NLP systems.
GUS-Net: Social Bias Classification in Text with Generalizations, Unfairness, and Stereotypes
The detection of bias in natural language processing (NLP) is a critical challenge, particularly with the increasing use of large language models (LLMs) in various domains. This paper introduces GUS-Net, an innovative approach to bias detection that focuses on three key types of biases: (G)eneralizations, (U)nfairness, and (S)tereotypes. GUS-Net leverages generative AI and automated agents to create a comprehensive synthetic dataset, enabling robust multi-label token classification. Our methodology enhances traditional bias detection methods by incorporating the contextual encodings of pre-trained models, resulting in improved accuracy and depth in identifying biased entities. Through extensive experiments, we demonstrate that GUS-Net outperforms state-of-the-art techniques, achieving superior performance in terms of accuracy, F1-score, and Hamming Loss. The findings highlight GUS-Net's effectiveness in capturing a wide range of biases across diverse contexts, making it a valuable tool for social bias detection in text. This study contributes to the ongoing efforts in NLP to address implicit bias, providing a pathway for future research and applications in various fields. The Jupyter notebooks used to create the dataset and model are available at: https://github.com/Ethical-Spectacle/fair-ly/tree/main/resources. Warning: This paper contains examples of harmful language, and reader discretion is recommended.
SANER: Annotation-free Societal Attribute Neutralizer for Debiasing CLIP
Large-scale vision-language models, such as CLIP, are known to contain societal bias regarding protected attributes (e.g., gender, age). This paper aims to address the problems of societal bias in CLIP. Although previous studies have proposed to debias societal bias through adversarial learning or test-time projecting, our comprehensive study of these works identifies two critical limitations: 1) loss of attribute information when it is explicitly disclosed in the input and 2) use of the attribute annotations during debiasing process. To mitigate societal bias in CLIP and overcome these limitations simultaneously, we introduce a simple-yet-effective debiasing method called SANER (societal attribute neutralizer) that eliminates attribute information from CLIP text features only of attribute-neutral descriptions. Experimental results show that SANER, which does not require attribute annotations and preserves original information for attribute-specific descriptions, demonstrates superior debiasing ability than the existing methods. Additionally, we observe that SANER does not require retraining CLIP from scratch with the original dataset. Moreover, the debiased model can be directly applied to the text-to-image generation model by simply replacing the text encoder.
Diversity and Inclusion Metrics in Subset Selection
The ethical concept of fairness has recently been applied in machine learning (ML) settings to describe a wide range of constraints and objectives. When considering the relevance of ethical concepts to subset selection problems, the concepts of diversity and inclusion are additionally applicable in order to create outputs that account for social power and access differentials. We introduce metrics based on these concepts, which can be applied together, separately, and in tandem with additional fairness constraints. Results from human subject experiments lend support to the proposed criteria. Social choice methods can additionally be leveraged to aggregate and choose preferable sets, and we detail how these may be applied.
What's in a Name? Auditing Large Language Models for Race and Gender Bias
We employ an audit design to investigate biases in state-of-the-art large language models, including GPT-4. In our study, we prompt the models for advice involving a named individual across a variety of scenarios, such as during car purchase negotiations or election outcome predictions. We find that the advice systematically disadvantages names that are commonly associated with racial minorities and women. Names associated with Black women receive the least advantageous outcomes. The biases are consistent across 42 prompt templates and several models, indicating a systemic issue rather than isolated incidents. While providing numerical, decision-relevant anchors in the prompt can successfully counteract the biases, qualitative details have inconsistent effects and may even increase disparities. Our findings underscore the importance of conducting audits at the point of LLM deployment and implementation to mitigate their potential for harm against marginalized communities.
Finetuning Text-to-Image Diffusion Models for Fairness
The rapid adoption of text-to-image diffusion models in society underscores an urgent need to address their biases. Without interventions, these biases could propagate a skewed worldview and restrict opportunities for minority groups. In this work, we frame fairness as a distributional alignment problem. Our solution consists of two main technical contributions: (1) a distributional alignment loss that steers specific characteristics of the generated images towards a user-defined target distribution, and (2) adjusted direct finetuning of diffusion model's sampling process (adjusted DFT), which leverages an adjusted gradient to directly optimize losses defined on the generated images. Empirically, our method markedly reduces gender, racial, and their intersectional biases for occupational prompts. Gender bias is significantly reduced even when finetuning just five soft tokens. Crucially, our method supports diverse perspectives of fairness beyond absolute equality, which is demonstrated by controlling age to a 75% young and 25% old distribution while simultaneously debiasing gender and race. Finally, our method is scalable: it can debias multiple concepts at once by simply including these prompts in the finetuning data. We share code and various fair diffusion model adaptors at https://sail-sg.github.io/finetune-fair-diffusion/.
An Empirical Survey of the Effectiveness of Debiasing Techniques for Pre-trained Language Models
Recent work has shown pre-trained language models capture social biases from the large amounts of text they are trained on. This has attracted attention to developing techniques that mitigate such biases. In this work, we perform an empirical survey of five recently proposed bias mitigation techniques: Counterfactual Data Augmentation (CDA), Dropout, Iterative Nullspace Projection, Self-Debias, and SentenceDebias. We quantify the effectiveness of each technique using three intrinsic bias benchmarks while also measuring the impact of these techniques on a model's language modeling ability, as well as its performance on downstream NLU tasks. We experimentally find that: (1) Self-Debias is the strongest debiasing technique, obtaining improved scores on all bias benchmarks; (2) Current debiasing techniques perform less consistently when mitigating non-gender biases; And (3) improvements on bias benchmarks such as StereoSet and CrowS-Pairs by using debiasing strategies are often accompanied by a decrease in language modeling ability, making it difficult to determine whether the bias mitigation was effective.
Rethinking Bias Mitigation: Fairer Architectures Make for Fairer Face Recognition
Face recognition systems are widely deployed in safety-critical applications, including law enforcement, yet they exhibit bias across a range of socio-demographic dimensions, such as gender and race. Conventional wisdom dictates that model biases arise from biased training data. As a consequence, previous works on bias mitigation largely focused on pre-processing the training data, adding penalties to prevent bias from effecting the model during training, or post-processing predictions to debias them, yet these approaches have shown limited success on hard problems such as face recognition. In our work, we discover that biases are actually inherent to neural network architectures themselves. Following this reframing, we conduct the first neural architecture search for fairness, jointly with a search for hyperparameters. Our search outputs a suite of models which Pareto-dominate all other high-performance architectures and existing bias mitigation methods in terms of accuracy and fairness, often by large margins, on the two most widely used datasets for face identification, CelebA and VGGFace2. Furthermore, these models generalize to other datasets and sensitive attributes. We release our code, models and raw data files at https://github.com/dooleys/FR-NAS.
Generative Echo Chamber? Effects of LLM-Powered Search Systems on Diverse Information Seeking
Large language models (LLMs) powered conversational search systems have already been used by hundreds of millions of people, and are believed to bring many benefits over conventional search. However, while decades of research and public discourse interrogated the risk of search systems in increasing selective exposure and creating echo chambers -- limiting exposure to diverse opinions and leading to opinion polarization, little is known about such a risk of LLM-powered conversational search. We conduct two experiments to investigate: 1) whether and how LLM-powered conversational search increases selective exposure compared to conventional search; 2) whether and how LLMs with opinion biases that either reinforce or challenge the user's view change the effect. Overall, we found that participants engaged in more biased information querying with LLM-powered conversational search, and an opinionated LLM reinforcing their views exacerbated this bias. These results present critical implications for the development of LLMs and conversational search systems, and the policy governing these technologies.
From Languages to Geographies: Towards Evaluating Cultural Bias in Hate Speech Datasets
Perceptions of hate can vary greatly across cultural contexts. Hate speech (HS) datasets, however, have traditionally been developed by language. This hides potential cultural biases, as one language may be spoken in different countries home to different cultures. In this work, we evaluate cultural bias in HS datasets by leveraging two interrelated cultural proxies: language and geography. We conduct a systematic survey of HS datasets in eight languages and confirm past findings on their English-language bias, but also show that this bias has been steadily decreasing in the past few years. For three geographically-widespread languages -- English, Arabic and Spanish -- we then leverage geographical metadata from tweets to approximate geo-cultural contexts by pairing language and country information. We find that HS datasets for these languages exhibit a strong geo-cultural bias, largely overrepresenting a handful of countries (e.g., US and UK for English) relative to their prominence in both the broader social media population and the general population speaking these languages. Based on these findings, we formulate recommendations for the creation of future HS datasets.
Neural Media Bias Detection Using Distant Supervision With BABE -- Bias Annotations By Experts
Media coverage has a substantial effect on the public perception of events. Nevertheless, media outlets are often biased. One way to bias news articles is by altering the word choice. The automatic identification of bias by word choice is challenging, primarily due to the lack of a gold standard data set and high context dependencies. This paper presents BABE, a robust and diverse data set created by trained experts, for media bias research. We also analyze why expert labeling is essential within this domain. Our data set offers better annotation quality and higher inter-annotator agreement than existing work. It consists of 3,700 sentences balanced among topics and outlets, containing media bias labels on the word and sentence level. Based on our data, we also introduce a way to detect bias-inducing sentences in news articles automatically. Our best performing BERT-based model is pre-trained on a larger corpus consisting of distant labels. Fine-tuning and evaluating the model on our proposed supervised data set, we achieve a macro F1-score of 0.804, outperforming existing methods.
MOSSBench: Is Your Multimodal Language Model Oversensitive to Safe Queries?
Humans are prone to cognitive distortions -- biased thinking patterns that lead to exaggerated responses to specific stimuli, albeit in very different contexts. This paper demonstrates that advanced Multimodal Large Language Models (MLLMs) exhibit similar tendencies. While these models are designed to respond queries under safety mechanism, they sometimes reject harmless queries in the presence of certain visual stimuli, disregarding the benign nature of their contexts. As the initial step in investigating this behavior, we identify three types of stimuli that trigger the oversensitivity of existing MLLMs: Exaggerated Risk, Negated Harm, and Counterintuitive Interpretation. To systematically evaluate MLLMs' oversensitivity to these stimuli, we propose the Multimodal OverSenSitivity Benchmark (MOSSBench). This toolkit consists of 300 manually collected benign multimodal queries, cross-verified by third-party reviewers (AMT). Empirical studies using MOSSBench on 20 MLLMs reveal several insights: (1). Oversensitivity is prevalent among SOTA MLLMs, with refusal rates reaching up to 76% for harmless queries. (2). Safer models are more oversensitive: increasing safety may inadvertently raise caution and conservatism in the model's responses. (3). Different types of stimuli tend to cause errors at specific stages -- perception, intent reasoning, and safety judgement -- in the response process of MLLMs. These findings highlight the need for refined safety mechanisms that balance caution with contextually appropriate responses, improving the reliability of MLLMs in real-world applications. We make our project available at https://turningpoint-ai.github.io/MOSSBench/.
Large Language Model (LLM) Bias Index -- LLMBI
The Large Language Model Bias Index (LLMBI) is a pioneering approach designed to quantify and address biases inherent in large language models (LLMs), such as GPT-4. We recognise the increasing prevalence and impact of LLMs across diverse sectors. This research introduces a novel metric, LLMBI, to systematically measure and mitigate biases potentially skewing model responses. We formulated LLMBI using a composite scoring system incorporating multiple dimensions of bias, including but not limited to age, gender, and racial biases. To operationalise this metric, we engaged in a multi-step process involving collecting and annotating LLM responses, applying sophisticated Natural Language Processing (NLP) techniques for bias detection, and computing the LLMBI score through a specially crafted mathematical formula. The formula integrates weighted averages of various bias dimensions, a penalty for dataset diversity deficiencies, and a correction for sentiment biases. Our empirical analysis, conducted using responses from OpenAI's API, employs advanced sentiment analysis as a representative method for bias detection. The research reveals LLMs, whilst demonstrating impressive capabilities in text generation, exhibit varying degrees of bias across different dimensions. LLMBI provides a quantifiable measure to compare biases across models and over time, offering a vital tool for systems engineers, researchers and regulators in enhancing the fairness and reliability of LLMs. It highlights the potential of LLMs in mimicking unbiased human-like responses. Additionally, it underscores the necessity of continuously monitoring and recalibrating such models to align with evolving societal norms and ethical standards.
On Measuring Social Biases in Sentence Encoders
The Word Embedding Association Test shows that GloVe and word2vec word embeddings exhibit human-like implicit biases based on gender, race, and other social constructs (Caliskan et al., 2017). Meanwhile, research on learning reusable text representations has begun to explore sentence-level texts, with some sentence encoders seeing enthusiastic adoption. Accordingly, we extend the Word Embedding Association Test to measure bias in sentence encoders. We then test several sentence encoders, including state-of-the-art methods such as ELMo and BERT, for the social biases studied in prior work and two important biases that are difficult or impossible to test at the word level. We observe mixed results including suspicious patterns of sensitivity that suggest the test's assumptions may not hold in general. We conclude by proposing directions for future work on measuring bias in sentence encoders.
Bias or Diversity? Unraveling Fine-Grained Thematic Discrepancy in U.S. News Headlines
There is a broad consensus that news media outlets incorporate ideological biases in their news articles. However, prior studies on measuring the discrepancies among media outlets and further dissecting the origins of thematic differences suffer from small sample sizes and limited scope and granularity. In this study, we use a large dataset of 1.8 million news headlines from major U.S. media outlets spanning from 2014 to 2022 to thoroughly track and dissect the fine-grained thematic discrepancy in U.S. news media. We employ multiple correspondence analysis (MCA) to quantify the fine-grained thematic discrepancy related to four prominent topics - domestic politics, economic issues, social issues, and foreign affairs in order to derive a more holistic analysis. Additionally, we compare the most frequent n-grams in media headlines to provide further qualitative insights into our analysis. Our findings indicate that on domestic politics and social issues, the discrepancy can be attributed to a certain degree of media bias. Meanwhile, the discrepancy in reporting foreign affairs is largely attributed to the diversity in individual journalistic styles. Finally, U.S. media outlets show consistency and high similarity in their coverage of economic issues.
BiasTestGPT: Using ChatGPT for Social Bias Testing of Language Models
Pretrained Language Models (PLMs) harbor inherent social biases that can result in harmful real-world implications. Such social biases are measured through the probability values that PLMs output for different social groups and attributes appearing in a set of test sentences. However, bias testing is currently cumbersome since the test sentences are generated either from a limited set of manual templates or need expensive crowd-sourcing. We instead propose using ChatGPT for the controllable generation of test sentences, given any arbitrary user-specified combination of social groups and attributes appearing in the test sentences. When compared to template-based methods, our approach using ChatGPT for test sentence generation is superior in detecting social bias, especially in challenging settings such as intersectional biases. We present an open-source comprehensive bias testing framework (BiasTestGPT), hosted on HuggingFace, that can be plugged into any open-source PLM for bias testing. User testing with domain experts from various fields has shown their interest in being able to test modern AI for social biases. Our tool has significantly improved their awareness of such biases in PLMs, proving to be learnable and user-friendly. We thus enable seamless open-ended social bias testing of PLMs by domain experts through an automatic large-scale generation of diverse test sentences for any combination of social categories and attributes.
ViG-Bias: Visually Grounded Bias Discovery and Mitigation
The proliferation of machine learning models in critical decision making processes has underscored the need for bias discovery and mitigation strategies. Identifying the reasons behind a biased system is not straightforward, since in many occasions they are associated with hidden spurious correlations which are not easy to spot. Standard approaches rely on bias audits performed by analyzing model performance in pre-defined subgroups of data samples, usually characterized by common attributes like gender or ethnicity when it comes to people, or other specific attributes defining semantically coherent groups of images. However, it is not always possible to know a-priori the specific attributes defining the failure modes of visual recognition systems. Recent approaches propose to discover these groups by leveraging large vision language models, which enable the extraction of cross-modal embeddings and the generation of textual descriptions to characterize the subgroups where a certain model is underperforming. In this work, we argue that incorporating visual explanations (e.g. heatmaps generated via GradCAM or other approaches) can boost the performance of such bias discovery and mitigation frameworks. To this end, we introduce Visually Grounded Bias Discovery and Mitigation (ViG-Bias), a simple yet effective technique which can be integrated to a variety of existing frameworks to improve both, discovery and mitigation performance. Our comprehensive evaluation shows that incorporating visual explanations enhances existing techniques like DOMINO, FACTS and Bias-to-Text, across several challenging datasets, including CelebA, Waterbirds, and NICO++.
A Survey on Bias and Fairness in Machine Learning
With the widespread use of AI systems and applications in our everyday lives, it is important to take fairness issues into consideration while designing and engineering these types of systems. Such systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that the decisions do not reflect discriminatory behavior toward certain groups or populations. We have recently seen work in machine learning, natural language processing, and deep learning that addresses such challenges in different subdomains. With the commercialization of these systems, researchers are becoming aware of the biases that these applications can contain and have attempted to address them. In this survey we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined in order to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and how they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.
Are Large Language Models Really Bias-Free? Jailbreak Prompts for Assessing Adversarial Robustness to Bias Elicitation
Large Language Models (LLMs) have revolutionized artificial intelligence, demonstrating remarkable computational power and linguistic capabilities. However, these models are inherently prone to various biases stemming from their training data. These include selection, linguistic, and confirmation biases, along with common stereotypes related to gender, ethnicity, sexual orientation, religion, socioeconomic status, disability, and age. This study explores the presence of these biases within the responses given by the most recent LLMs, analyzing the impact on their fairness and reliability. We also investigate how known prompt engineering techniques can be exploited to effectively reveal hidden biases of LLMs, testing their adversarial robustness against jailbreak prompts specially crafted for bias elicitation. Extensive experiments are conducted using the most widespread LLMs at different scales, confirming that LLMs can still be manipulated to produce biased or inappropriate responses, despite their advanced capabilities and sophisticated alignment processes. Our findings underscore the importance of enhancing mitigation techniques to address these safety issues, toward a more sustainable and inclusive artificial intelligence.
This Thing Called Fairness: Disciplinary Confusion Realizing a Value in Technology
The explosion in the use of software in important sociotechnical systems has renewed focus on the study of the way technical constructs reflect policies, norms, and human values. This effort requires the engagement of scholars and practitioners from many disciplines. And yet, these disciplines often conceptualize the operative values very differently while referring to them using the same vocabulary. The resulting conflation of ideas confuses discussions about values in technology at disciplinary boundaries. In the service of improving this situation, this paper examines the value of shared vocabularies, analytics, and other tools that facilitate conversations about values in light of these disciplinary specific conceptualizations, the role such tools play in furthering research and practice, outlines different conceptions of "fairness" deployed in discussions about computer systems, and provides an analytic tool for interdisciplinary discussions and collaborations around the concept of fairness. We use a case study of risk assessments in criminal justice applications to both motivate our effort--describing how conflation of different concepts under the banner of "fairness" led to unproductive confusion--and illustrate the value of the fairness analytic by demonstrating how the rigorous analysis it enables can assist in identifying key areas of theoretical, political, and practical misunderstanding or disagreement, and where desired support alignment or collaboration in the absence of consensus.
KoMultiText: Large-Scale Korean Text Dataset for Classifying Biased Speech in Real-World Online Services
With the growth of online services, the need for advanced text classification algorithms, such as sentiment analysis and biased text detection, has become increasingly evident. The anonymous nature of online services often leads to the presence of biased and harmful language, posing challenges to maintaining the health of online communities. This phenomenon is especially relevant in South Korea, where large-scale hate speech detection algorithms have not yet been broadly explored. In this paper, we introduce "KoMultiText", a new comprehensive, large-scale dataset collected from a well-known South Korean SNS platform. Our proposed dataset provides annotations including (1) Preferences, (2) Profanities, and (3) Nine types of Bias for the text samples, enabling multi-task learning for simultaneous classification of user-generated texts. Leveraging state-of-the-art BERT-based language models, our approach surpasses human-level accuracy across diverse classification tasks, as measured by various metrics. Beyond academic contributions, our work can provide practical solutions for real-world hate speech and bias mitigation, contributing directly to the improvement of online community health. Our work provides a robust foundation for future research aiming to improve the quality of online discourse and foster societal well-being. All source codes and datasets are publicly accessible at https://github.com/Dasol-Choi/KoMultiText.
ROBBIE: Robust Bias Evaluation of Large Generative Language Models
As generative large language models (LLMs) grow more performant and prevalent, we must develop comprehensive enough tools to measure and improve their fairness. Different prompt-based datasets can be used to measure social bias across multiple text domains and demographic axes, meaning that testing LLMs on more datasets can potentially help us characterize their biases more fully, and better ensure equal and equitable treatment of marginalized demographic groups. In this work, our focus is two-fold: (1) Benchmarking: a comparison of 6 different prompt-based bias and toxicity metrics across 12 demographic axes and 5 families of generative LLMs. Out of those 6 metrics, AdvPromptSet and HolisticBiasR are novel datasets proposed in the paper. The comparison of those benchmarks gives us insights about the bias and toxicity of the compared models. Therefore, we explore the frequency of demographic terms in common LLM pre-training corpora and how this may relate to model biases. (2) Mitigation: we conduct a comprehensive study of how well 3 bias/toxicity mitigation techniques perform across our suite of measurements. ROBBIE aims to provide insights for practitioners while deploying a model, emphasizing the need to not only measure potential harms, but also understand how they arise by characterizing the data, mitigate harms once found, and balance any trade-offs. We open-source our analysis code in hopes of encouraging broader measurements of bias in future LLMs.
Mind the gap in university rankings: a complex network approach towards fairness
University rankings are increasingly adopted for academic comparison and success quantification, even to establish performance-based criteria for funding assignment. However, rankings are not neutral tools, and their use frequently overlooks disparities in the starting conditions of institutions. In this research, we detect and measure structural biases that affect in inhomogeneous ways the ranking outcomes of universities from diversified territorial and educational contexts. Moreover, we develop a fairer rating system based on a fully data-driven debiasing strategy that returns an equity-oriented redefinition of the achieved scores. The key idea consists in partitioning universities in similarity groups, determined from multifaceted data using complex network analysis, and referring the performance of each institution to an expectation based on its peers. Significant evidence of territorial biases emerges for official rankings concerning both the OECD and Italian university systems, hence debiasing provides relevant insights suggesting the design of fairer strategies for performance-based funding allocations.
New Job, New Gender? Measuring the Social Bias in Image Generation Models
Image generation models can generate or edit images from a given text. Recent advancements in image generation technology, exemplified by DALL-E and Midjourney, have been groundbreaking. These advanced models, despite their impressive capabilities, are often trained on massive Internet datasets, making them susceptible to generating content that perpetuates social stereotypes and biases, which can lead to severe consequences. Prior research on assessing bias within image generation models suffers from several shortcomings, including limited accuracy, reliance on extensive human labor, and lack of comprehensive analysis. In this paper, we propose BiasPainter, a novel evaluation framework that can accurately, automatically and comprehensively trigger social bias in image generation models. BiasPainter uses a diverse range of seed images of individuals and prompts the image generation models to edit these images using gender, race, and age-neutral queries. These queries span 62 professions, 39 activities, 57 types of objects, and 70 personality traits. The framework then compares the edited images to the original seed images, focusing on the significant changes related to gender, race, and age. BiasPainter adopts a key insight that these characteristics should not be modified when subjected to neutral prompts. Built upon this design, BiasPainter can trigger the social bias and evaluate the fairness of image generation models. We use BiasPainter to evaluate six widely-used image generation models, such as stable diffusion and Midjourney. Experimental results show that BiasPainter can successfully trigger social bias in image generation models. According to our human evaluation, BiasPainter can achieve 90.8% accuracy on automatic bias detection, which is significantly higher than the results reported in previous work.
Should ChatGPT be Biased? Challenges and Risks of Bias in Large Language Models
As the capabilities of generative language models continue to advance, the implications of biases ingrained within these models have garnered increasing attention from researchers, practitioners, and the broader public. This article investigates the challenges and risks associated with biases in large-scale language models like ChatGPT. We discuss the origins of biases, stemming from, among others, the nature of training data, model specifications, algorithmic constraints, product design, and policy decisions. We explore the ethical concerns arising from the unintended consequences of biased model outputs. We further analyze the potential opportunities to mitigate biases, the inevitability of some biases, and the implications of deploying these models in various applications, such as virtual assistants, content generation, and chatbots. Finally, we review the current approaches to identify, quantify, and mitigate biases in language models, emphasizing the need for a multi-disciplinary, collaborative effort to develop more equitable, transparent, and responsible AI systems. This article aims to stimulate a thoughtful dialogue within the artificial intelligence community, encouraging researchers and developers to reflect on the role of biases in generative language models and the ongoing pursuit of ethical AI.
Revealing Fine-Grained Values and Opinions in Large Language Models
Uncovering latent values and opinions in large language models (LLMs) can help identify biases and mitigate potential harm. Recently, this has been approached by presenting LLMs with survey questions and quantifying their stances towards morally and politically charged statements. However, the stances generated by LLMs can vary greatly depending on how they are prompted, and there are many ways to argue for or against a given position. In this work, we propose to address this by analysing a large and robust dataset of 156k LLM responses to the 62 propositions of the Political Compass Test (PCT) generated by 6 LLMs using 420 prompt variations. We perform coarse-grained analysis of their generated stances and fine-grained analysis of the plain text justifications for those stances. For fine-grained analysis, we propose to identify tropes in the responses: semantically similar phrases that are recurrent and consistent across different prompts, revealing patterns in the text that a given LLM is prone to produce. We find that demographic features added to prompts significantly affect outcomes on the PCT, reflecting bias, as well as disparities between the results of tests when eliciting closed-form vs. open domain responses. Additionally, patterns in the plain text rationales via tropes show that similar justifications are repeatedly generated across models and prompts even with disparate stances.
[Re] Badder Seeds: Reproducing the Evaluation of Lexical Methods for Bias Measurement
Combating bias in NLP requires bias measurement. Bias measurement is almost always achieved by using lexicons of seed terms, i.e. sets of words specifying stereotypes or dimensions of interest. This reproducibility study focuses on the original authors' main claim that the rationale for the construction of these lexicons needs thorough checking before usage, as the seeds used for bias measurement can themselves exhibit biases. The study aims to evaluate the reproducibility of the quantitative and qualitative results presented in the paper and the conclusions drawn thereof. We reproduce most of the results supporting the original authors' general claim: seed sets often suffer from biases that affect their performance as a baseline for bias metrics. Generally, our results mirror the original paper's. They are slightly different on select occasions, but not in ways that undermine the paper's general intent to show the fragility of seed sets.
Easily Accessible Text-to-Image Generation Amplifies Demographic Stereotypes at Large Scale
Machine learning models are now able to convert user-written text descriptions into naturalistic images. These models are available to anyone online and are being used to generate millions of images a day. We investigate these models and find that they amplify dangerous and complex stereotypes. Moreover, we find that the amplified stereotypes are difficult to predict and not easily mitigated by users or model owners. The extent to which these image-generation models perpetuate and amplify stereotypes and their mass deployment is cause for serious concern.
Understanding Position Bias Effects on Fairness in Social Multi-Document Summarization
Text summarization models have typically focused on optimizing aspects of quality such as fluency, relevance, and coherence, particularly in the context of news articles. However, summarization models are increasingly being used to summarize diverse sources of text, such as social media data, that encompass a wide demographic user base. It is thus crucial to assess not only the quality of the generated summaries, but also the extent to which they can fairly represent the opinions of diverse social groups. Position bias, a long-known issue in news summarization, has received limited attention in the context of social multi-document summarization. We deeply investigate this phenomenon by analyzing the effect of group ordering in input documents when summarizing tweets from three distinct linguistic communities: African-American English, Hispanic-aligned Language, and White-aligned Language. Our empirical analysis shows that although the textual quality of the summaries remains consistent regardless of the input document order, in terms of fairness, the results vary significantly depending on how the dialect groups are presented in the input data. Our results suggest that position bias manifests differently in social multi-document summarization, severely impacting the fairness of summarization models.
Investigating Gender Bias in Turkish Language Models
Language models are trained mostly on Web data, which often contains social stereotypes and biases that the models can inherit. This has potentially negative consequences, as models can amplify these biases in downstream tasks or applications. However, prior research has primarily focused on the English language, especially in the context of gender bias. In particular, grammatically gender-neutral languages such as Turkish are underexplored despite representing different linguistic properties to language models with possibly different effects on biases. In this paper, we fill this research gap and investigate the significance of gender bias in Turkish language models. We build upon existing bias evaluation frameworks and extend them to the Turkish language by translating existing English tests and creating new ones designed to measure gender bias in the context of T\"urkiye. Specifically, we also evaluate Turkish language models for their embedded ethnic bias toward Kurdish people. Based on the experimental results, we attribute possible biases to different model characteristics such as the model size, their multilingualism, and the training corpora. We make the Turkish gender bias dataset publicly available.
GenderBias-VL: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing
Large Vision-Language Models (LVLMs) have been widely adopted in various applications; however, they exhibit significant gender biases. Existing benchmarks primarily evaluate gender bias at the demographic group level, neglecting individual fairness, which emphasizes equal treatment of similar individuals. This research gap limits the detection of discriminatory behaviors, as individual fairness offers a more granular examination of biases that group fairness may overlook. For the first time, this paper introduces the GenderBias-VL benchmark to evaluate occupation-related gender bias in LVLMs using counterfactual visual questions under individual fairness criteria. To construct this benchmark, we first utilize text-to-image diffusion models to generate occupation images and their gender counterfactuals. Subsequently, we generate corresponding textual occupation options by identifying stereotyped occupation pairs with high semantic similarity but opposite gender proportions in real-world statistics. This method enables the creation of large-scale visual question counterfactuals to expose biases in LVLMs, applicable in both multimodal and unimodal contexts through modifying gender attributes in specific modalities. Overall, our GenderBias-VL benchmark comprises 34,581 visual question counterfactual pairs, covering 177 occupations. Using our benchmark, we extensively evaluate 15 commonly used open-source LVLMs (\eg, LLaVA) and state-of-the-art commercial APIs, including GPT-4o and Gemini-Pro. Our findings reveal widespread gender biases in existing LVLMs. Our benchmark offers: (1) a comprehensive dataset for occupation-related gender bias evaluation; (2) an up-to-date leaderboard on LVLM biases; and (3) a nuanced understanding of the biases presented by these models. The dataset and code are available at the \href{https://genderbiasvl.github.io/{website}.}
Self-Debiasing Large Language Models: Zero-Shot Recognition and Reduction of Stereotypes
Large language models (LLMs) have shown remarkable advances in language generation and understanding but are also prone to exhibiting harmful social biases. While recognition of these behaviors has generated an abundance of bias mitigation techniques, most require modifications to the training data, model parameters, or decoding strategy, which may be infeasible without access to a trainable model. In this work, we leverage the zero-shot capabilities of LLMs to reduce stereotyping in a technique we introduce as zero-shot self-debiasing. With two approaches, self-debiasing via explanation and self-debiasing via reprompting, we show that self-debiasing can significantly reduce the degree of stereotyping across nine different social groups while relying only on the LLM itself and a simple prompt, with explanations correctly identifying invalid assumptions and reprompting delivering the greatest reductions in bias. We hope this work opens inquiry into other zero-shot techniques for bias mitigation.
CIVICS: Building a Dataset for Examining Culturally-Informed Values in Large Language Models
This paper introduces the "CIVICS: Culturally-Informed & Values-Inclusive Corpus for Societal impacts" dataset, designed to evaluate the social and cultural variation of Large Language Models (LLMs) across multiple languages and value-sensitive topics. We create a hand-crafted, multilingual dataset of value-laden prompts which address specific socially sensitive topics, including LGBTQI rights, social welfare, immigration, disability rights, and surrogacy. CIVICS is designed to generate responses showing LLMs' encoded and implicit values. Through our dynamic annotation processes, tailored prompt design, and experiments, we investigate how open-weight LLMs respond to value-sensitive issues, exploring their behavior across diverse linguistic and cultural contexts. Using two experimental set-ups based on log-probabilities and long-form responses, we show social and cultural variability across different LLMs. Specifically, experiments involving long-form responses demonstrate that refusals are triggered disparately across models, but consistently and more frequently in English or translated statements. Moreover, specific topics and sources lead to more pronounced differences across model answers, particularly on immigration, LGBTQI rights, and social welfare. As shown by our experiments, the CIVICS dataset aims to serve as a tool for future research, promoting reproducibility and transparency across broader linguistic settings, and furthering the development of AI technologies that respect and reflect global cultural diversities and value pluralism. The CIVICS dataset and tools will be made available upon publication under open licenses; an anonymized version is currently available at https://huggingface.co/CIVICS-dataset.
Comparing Human and Machine Bias in Face Recognition
Much recent research has uncovered and discussed serious concerns of bias in facial analysis technologies, finding performance disparities between groups of people based on perceived gender, skin type, lighting condition, etc. These audits are immensely important and successful at measuring algorithmic bias but have two major challenges: the audits (1) use facial recognition datasets which lack quality metadata, like LFW and CelebA, and (2) do not compare their observed algorithmic bias to the biases of their human alternatives. In this paper, we release improvements to the LFW and CelebA datasets which will enable future researchers to obtain measurements of algorithmic bias that are not tainted by major flaws in the dataset (e.g. identical images appearing in both the gallery and test set). We also use these new data to develop a series of challenging facial identification and verification questions that we administered to various algorithms and a large, balanced sample of human reviewers. We find that both computer models and human survey participants perform significantly better at the verification task, generally obtain lower accuracy rates on dark-skinned or female subjects for both tasks, and obtain higher accuracy rates when their demographics match that of the question. Computer models are observed to achieve a higher level of accuracy than the survey participants on both tasks and exhibit bias to similar degrees as the human survey participants.
Political Compass or Spinning Arrow? Towards More Meaningful Evaluations for Values and Opinions in Large Language Models
Much recent work seeks to evaluate values and opinions in large language models (LLMs) using multiple-choice surveys and questionnaires. Most of this work is motivated by concerns around real-world LLM applications. For example, politically-biased LLMs may subtly influence society when they are used by millions of people. Such real-world concerns, however, stand in stark contrast to the artificiality of current evaluations: real users do not typically ask LLMs survey questions. Motivated by this discrepancy, we challenge the prevailing constrained evaluation paradigm for values and opinions in LLMs and explore more realistic unconstrained evaluations. As a case study, we focus on the popular Political Compass Test (PCT). In a systematic review, we find that most prior work using the PCT forces models to comply with the PCT's multiple-choice format. We show that models give substantively different answers when not forced; that answers change depending on how models are forced; and that answers lack paraphrase robustness. Then, we demonstrate that models give different answers yet again in a more realistic open-ended answer setting. We distill these findings into recommendations and open challenges in evaluating values and opinions in LLMs.
An Empirical Study on the Characteristics of Bias upon Context Length Variation for Bangla
Pretrained language models inherently exhibit various social biases, prompting a crucial examination of their social impact across various linguistic contexts due to their widespread usage. Previous studies have provided numerous methods for intrinsic bias measurements, predominantly focused on high-resource languages. In this work, we aim to extend these investigations to Bangla, a low-resource language. Specifically, in this study, we (1) create a dataset for intrinsic gender bias measurement in Bangla, (2) discuss necessary adaptations to apply existing bias measurement methods for Bangla, and (3) examine the impact of context length variation on bias measurement, a factor that has been overlooked in previous studies. Through our experiments, we demonstrate a clear dependency of bias metrics on context length, highlighting the need for nuanced considerations in Bangla bias analysis. We consider our work as a stepping stone for bias measurement in the Bangla Language and make all of our resources publicly available to support future research.
Are Models Biased on Text without Gender-related Language?
Gender bias research has been pivotal in revealing undesirable behaviors in large language models, exposing serious gender stereotypes associated with occupations, and emotions. A key observation in prior work is that models reinforce stereotypes as a consequence of the gendered correlations that are present in the training data. In this paper, we focus on bias where the effect from training data is unclear, and instead address the question: Do language models still exhibit gender bias in non-stereotypical settings? To do so, we introduce UnStereoEval (USE), a novel framework tailored for investigating gender bias in stereotype-free scenarios. USE defines a sentence-level score based on pretraining data statistics to determine if the sentence contain minimal word-gender associations. To systematically benchmark the fairness of popular language models in stereotype-free scenarios, we utilize USE to automatically generate benchmarks without any gender-related language. By leveraging USE's sentence-level score, we also repurpose prior gender bias benchmarks (Winobias and Winogender) for non-stereotypical evaluation. Surprisingly, we find low fairness across all 28 tested models. Concretely, models demonstrate fair behavior in only 9%-41% of stereotype-free sentences, suggesting that bias does not solely stem from the presence of gender-related words. These results raise important questions about where underlying model biases come from and highlight the need for more systematic and comprehensive bias evaluation. We release the full dataset and code at https://ucinlp.github.io/unstereo-eval.
From Prejudice to Parity: A New Approach to Debiasing Large Language Model Word Embeddings
Embeddings play a pivotal role in the efficacy of Large Language Models. They are the bedrock on which these models grasp contextual relationships and foster a more nuanced understanding of language and consequently perform remarkably on a plethora of complex tasks that require a fundamental understanding of human language. Given that these embeddings themselves often reflect or exhibit bias, it stands to reason that these models may also inadvertently learn this bias. In this work, we build on the seminal previous work and propose DeepSoftDebias, an algorithm that uses a neural network to perform 'soft debiasing'. We exhaustively evaluate this algorithm across a variety of SOTA datasets, accuracy metrics, and challenging NLP tasks. We find that DeepSoftDebias outperforms the current state-of-the-art methods at reducing bias across gender, race, and religion.
Vicarious Offense and Noise Audit of Offensive Speech Classifiers: Unifying Human and Machine Disagreement on What is Offensive
Offensive speech detection is a key component of content moderation. However, what is offensive can be highly subjective. This paper investigates how machine and human moderators disagree on what is offensive when it comes to real-world social web political discourse. We show that (1) there is extensive disagreement among the moderators (humans and machines); and (2) human and large-language-model classifiers are unable to predict how other human raters will respond, based on their political leanings. For (1), we conduct a noise audit at an unprecedented scale that combines both machine and human responses. For (2), we introduce a first-of-its-kind dataset of vicarious offense. Our noise audit reveals that moderation outcomes vary wildly across different machine moderators. Our experiments with human moderators suggest that political leanings combined with sensitive issues affect both first-person and vicarious offense. The dataset is available through https://github.com/Homan-Lab/voiced.
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings
The blind application of machine learning runs the risk of amplifying biases present in data. Such a danger is facing us with word embedding, a popular framework to represent text data as vectors which has been used in many machine learning and natural language processing tasks. We show that even word embeddings trained on Google News articles exhibit female/male gender stereotypes to a disturbing extent. This raises concerns because their widespread use, as we describe, often tends to amplify these biases. Geometrically, gender bias is first shown to be captured by a direction in the word embedding. Second, gender neutral words are shown to be linearly separable from gender definition words in the word embedding. Using these properties, we provide a methodology for modifying an embedding to remove gender stereotypes, such as the association between between the words receptionist and female, while maintaining desired associations such as between the words queen and female. We define metrics to quantify both direct and indirect gender biases in embeddings, and develop algorithms to "debias" the embedding. Using crowd-worker evaluation as well as standard benchmarks, we empirically demonstrate that our algorithms significantly reduce gender bias in embeddings while preserving the its useful properties such as the ability to cluster related concepts and to solve analogy tasks. The resulting embeddings can be used in applications without amplifying gender bias.
OpinionGPT: Modelling Explicit Biases in Instruction-Tuned LLMs
Instruction-tuned Large Language Models (LLMs) have recently showcased remarkable ability to generate fitting responses to natural language instructions. However, an open research question concerns the inherent biases of trained models and their responses. For instance, if the data used to tune an LLM is dominantly written by persons with a specific political bias, we might expect generated answers to share this bias. Current research work seeks to de-bias such models, or suppress potentially biased answers. With this demonstration, we take a different view on biases in instruction-tuning: Rather than aiming to suppress them, we aim to make them explicit and transparent. To this end, we present OpinionGPT, a web demo in which users can ask questions and select all biases they wish to investigate. The demo will answer this question using a model fine-tuned on text representing each of the selected biases, allowing side-by-side comparison. To train the underlying model, we identified 11 different biases (political, geographic, gender, age) and derived an instruction-tuning corpus in which each answer was written by members of one of these demographics. This paper presents OpinionGPT, illustrates how we trained the bias-aware model and showcases the web application (available at https://opiniongpt.informatik.hu-berlin.de).
Revisiting The Classics: A Study on Identifying and Rectifying Gender Stereotypes in Rhymes and Poems
Rhymes and poems are a powerful medium for transmitting cultural norms and societal roles. However, the pervasive existence of gender stereotypes in these works perpetuates biased perceptions and limits the scope of individuals' identities. Past works have shown that stereotyping and prejudice emerge in early childhood, and developmental research on causal mechanisms is critical for understanding and controlling stereotyping and prejudice. This work contributes by gathering a dataset of rhymes and poems to identify gender stereotypes and propose a model with 97% accuracy to identify gender bias. Gender stereotypes were rectified using a Large Language Model (LLM) and its effectiveness was evaluated in a comparative survey against human educator rectifications. To summarize, this work highlights the pervasive nature of gender stereotypes in literary works and reveals the potential of LLMs to rectify gender stereotypes. This study raises awareness and promotes inclusivity within artistic expressions, making a significant contribution to the discourse on gender equality.
Evaluating and Mitigating Discrimination in Language Model Decisions
As language models (LMs) advance, interest is growing in applying them to high-stakes societal decisions, such as determining financing or housing eligibility. However, their potential for discrimination in such contexts raises ethical concerns, motivating the need for better methods to evaluate these risks. We present a method for proactively evaluating the potential discriminatory impact of LMs in a wide range of use cases, including hypothetical use cases where they have not yet been deployed. Specifically, we use an LM to generate a wide array of potential prompts that decision-makers may input into an LM, spanning 70 diverse decision scenarios across society, and systematically vary the demographic information in each prompt. Applying this methodology reveals patterns of both positive and negative discrimination in the Claude 2.0 model in select settings when no interventions are applied. While we do not endorse or permit the use of language models to make automated decisions for the high-risk use cases we study, we demonstrate techniques to significantly decrease both positive and negative discrimination through careful prompt engineering, providing pathways toward safer deployment in use cases where they may be appropriate. Our work enables developers and policymakers to anticipate, measure, and address discrimination as language model capabilities and applications continue to expand. We release our dataset and prompts at https://huggingface.co/datasets/Anthropic/discrim-eval
Towards Effective Counter-Responses: Aligning Human Preferences with Strategies to Combat Online Trolling
Trolling in online communities typically involves disruptive behaviors such as provoking anger and manipulating discussions, leading to a polarized atmosphere and emotional distress. Robust moderation is essential for mitigating these negative impacts and maintaining a healthy and constructive community atmosphere. However, effectively addressing trolls is difficult because their behaviors vary widely and require different response strategies (RSs) to counter them. This diversity makes it challenging to choose an appropriate RS for each specific situation. To address this challenge, our research investigates whether humans have preferred strategies tailored to different types of trolling behaviors. Our findings reveal a correlation between the types of trolling encountered and the preferred RS. In this paper, we introduce a methodology for generating counter-responses to trolls by recommending appropriate RSs, supported by a dataset aligning these strategies with human preferences across various troll contexts. The experimental results demonstrate that our proposed approach guides constructive discussion and reduces the negative effects of trolls, thereby enhancing the online community environment.
Mapping and Influencing the Political Ideology of Large Language Models using Synthetic Personas
The analysis of political biases in large language models (LLMs) has primarily examined these systems as single entities with fixed viewpoints. While various methods exist for measuring such biases, the impact of persona-based prompting on LLMs' political orientation remains unexplored. In this work we leverage PersonaHub, a collection of synthetic persona descriptions, to map the political distribution of persona-based prompted LLMs using the Political Compass Test (PCT). We then examine whether these initial compass distributions can be manipulated through explicit ideological prompting towards diametrically opposed political orientations: right-authoritarian and left-libertarian. Our experiments reveal that synthetic personas predominantly cluster in the left-libertarian quadrant, with models demonstrating varying degrees of responsiveness when prompted with explicit ideological descriptors. While all models demonstrate significant shifts towards right-authoritarian positions, they exhibit more limited shifts towards left-libertarian positions, suggesting an asymmetric response to ideological manipulation that may reflect inherent biases in model training.
Towards Measuring the Representation of Subjective Global Opinions in Language Models
Large language models (LLMs) may not equitably represent diverse global perspectives on societal issues. In this paper, we develop a quantitative framework to evaluate whose opinions model-generated responses are more similar to. We first build a dataset, GlobalOpinionQA, comprised of questions and answers from cross-national surveys designed to capture diverse opinions on global issues across different countries. Next, we define a metric that quantifies the similarity between LLM-generated survey responses and human responses, conditioned on country. With our framework, we run three experiments on an LLM trained to be helpful, honest, and harmless with Constitutional AI. By default, LLM responses tend to be more similar to the opinions of certain populations, such as those from the USA, and some European and South American countries, highlighting the potential for biases. When we prompt the model to consider a particular country's perspective, responses shift to be more similar to the opinions of the prompted populations, but can reflect harmful cultural stereotypes. When we translate GlobalOpinionQA questions to a target language, the model's responses do not necessarily become the most similar to the opinions of speakers of those languages. We release our dataset for others to use and build on. Our data is at https://huggingface.co/datasets/Anthropic/llm_global_opinions. We also provide an interactive visualization at https://llmglobalvalues.anthropic.com.
Social Bias in Large Language Models For Bangla: An Empirical Study on Gender and Religious Bias
The rapid growth of Large Language Models (LLMs) has put forward the study of biases as a crucial field. It is important to assess the influence of different types of biases embedded in LLMs to ensure fair use in sensitive fields. Although there have been extensive works on bias assessment in English, such efforts are rare and scarce for a major language like Bangla. In this work, we examine two types of social biases in LLM generated outputs for Bangla language. Our main contributions in this work are: (1) bias studies on two different social biases for Bangla (2) a curated dataset for bias measurement benchmarking (3) two different probing techniques for bias detection in the context of Bangla. This is the first work of such kind involving bias assessment of LLMs for Bangla to the best of our knowledge. All our code and resources are publicly available for the progress of bias related research in Bangla NLP.
Large Language Models Reflect the Ideology of their Creators
Large language models (LLMs) are trained on vast amounts of data to generate natural language, enabling them to perform tasks like text summarization and question answering. These models have become popular in artificial intelligence (AI) assistants like ChatGPT and already play an influential role in how humans access information. However, the behavior of LLMs varies depending on their design, training, and use. In this paper, we uncover notable diversity in the ideological stance exhibited across different LLMs and languages in which they are accessed. We do this by prompting a diverse panel of popular LLMs to describe a large number of prominent and controversial personalities from recent world history, both in English and in Chinese. By identifying and analyzing moral assessments reflected in the generated descriptions, we find consistent normative differences between how the same LLM responds in Chinese compared to English. Similarly, we identify normative disagreements between Western and non-Western LLMs about prominent actors in geopolitical conflicts. Furthermore, popularly hypothesized disparities in political goals among Western models are reflected in significant normative differences related to inclusion, social inequality, and political scandals. Our results show that the ideological stance of an LLM often reflects the worldview of its creators. This raises important concerns around technological and regulatory efforts with the stated aim of making LLMs ideologically `unbiased', and it poses risks for political instrumentalization.
BEADs: Bias Evaluation Across Domains
Recent improvements in large language models (LLMs) have significantly enhanced natural language processing (NLP) applications. However, these models can also inherit and perpetuate biases from their training data. Addressing this issue is crucial, yet many existing datasets do not offer evaluation across diverse NLP tasks. To tackle this, we introduce the Bias Evaluations Across Domains (BEADs) dataset, designed to support a wide range of NLP tasks, including text classification, bias entity recognition, bias quantification, and benign language generation. BEADs uses AI-driven annotation combined with experts' verification to provide reliable labels. This method overcomes the limitations of existing datasets that typically depend on crowd-sourcing, expert-only annotations with limited bias evaluations, or unverified AI labeling. Our empirical analysis shows that BEADs is effective in detecting and reducing biases across different language models, with smaller models fine-tuned on BEADs often outperforming LLMs in bias classification tasks. However, these models may still exhibit biases towards certain demographics. Fine-tuning LLMs with our benign language data also reduces biases while preserving the models' knowledge. Our findings highlight the importance of comprehensive bias evaluation and the potential of targeted fine-tuning for reducing the bias of LLMs. We are making BEADs publicly available at https://huggingface.co/datasets/shainar/BEAD Warning: This paper contains examples that may be considered offensive.
SEPSIS: I Can Catch Your Lies -- A New Paradigm for Deception Detection
Deception is the intentional practice of twisting information. It is a nuanced societal practice deeply intertwined with human societal evolution, characterized by a multitude of facets. This research explores the problem of deception through the lens of psychology, employing a framework that categorizes deception into three forms: lies of omission, lies of commission, and lies of influence. The primary focus of this study is specifically on investigating only lies of omission. We propose a novel framework for deception detection leveraging NLP techniques. We curated an annotated dataset of 876,784 samples by amalgamating a popular large-scale fake news dataset and scraped news headlines from the Twitter handle of Times of India, a well-known Indian news media house. Each sample has been labeled with four layers, namely: (i) the type of omission (speculation, bias, distortion, sounds factual, and opinion), (ii) colors of lies(black, white, etc), and (iii) the intention of such lies (to influence, etc) (iv) topic of lies (political, educational, religious, etc). We present a novel multi-task learning pipeline that leverages the dataless merging of fine-tuned language models to address the deception detection task mentioned earlier. Our proposed model achieved an F1 score of 0.87, demonstrating strong performance across all layers including the type, color, intent, and topic aspects of deceptive content. Finally, our research explores the relationship between lies of omission and propaganda techniques. To accomplish this, we conducted an in-depth analysis, uncovering compelling findings. For instance, our analysis revealed a significant correlation between loaded language and opinion, shedding light on their interconnectedness. To encourage further research in this field, we will be making the models and dataset available with the MIT License, making it favorable for open-source research.
Evaluation of Geographical Distortions in Language Models: A Crucial Step Towards Equitable Representations
Language models now constitute essential tools for improving efficiency for many professional tasks such as writing, coding, or learning. For this reason, it is imperative to identify inherent biases. In the field of Natural Language Processing, five sources of bias are well-identified: data, annotation, representation, models, and research design. This study focuses on biases related to geographical knowledge. We explore the connection between geography and language models by highlighting their tendency to misrepresent spatial information, thus leading to distortions in the representation of geographical distances. This study introduces four indicators to assess these distortions, by comparing geographical and semantic distances. Experiments are conducted from these four indicators with ten widely used language models. Results underscore the critical necessity of inspecting and rectifying spatial biases in language models to ensure accurate and equitable representations.
Factoring the Matrix of Domination: A Critical Review and Reimagination of Intersectionality in AI Fairness
Intersectionality is a critical framework that, through inquiry and praxis, allows us to examine how social inequalities persist through domains of structure and discipline. Given AI fairness' raison d'etre of "fairness", we argue that adopting intersectionality as an analytical framework is pivotal to effectively operationalizing fairness. Through a critical review of how intersectionality is discussed in 30 papers from the AI fairness literature, we deductively and inductively: 1) map how intersectionality tenets operate within the AI fairness paradigm and 2) uncover gaps between the conceptualization and operationalization of intersectionality. We find that researchers overwhelmingly reduce intersectionality to optimizing for fairness metrics over demographic subgroups. They also fail to discuss their social context and when mentioning power, they mostly situate it only within the AI pipeline. We: 3) outline and assess the implications of these gaps for critical inquiry and praxis, and 4) provide actionable recommendations for AI fairness researchers to engage with intersectionality in their work by grounding it in AI epistemology.
On the Challenges of Using Black-Box APIs for Toxicity Evaluation in Research
Perception of toxicity evolves over time and often differs between geographies and cultural backgrounds. Similarly, black-box commercially available APIs for detecting toxicity, such as the Perspective API, are not static, but frequently retrained to address any unattended weaknesses and biases. We evaluate the implications of these changes on the reproducibility of findings that compare the relative merits of models and methods that aim to curb toxicity. Our findings suggest that research that relied on inherited automatic toxicity scores to compare models and techniques may have resulted in inaccurate findings. Rescoring all models from HELM, a widely respected living benchmark, for toxicity with the recent version of the API led to a different ranking of widely used foundation models. We suggest caution in applying apples-to-apples comparisons between studies and lay recommendations for a more structured approach to evaluating toxicity over time. Code and data are available at https://github.com/for-ai/black-box-api-challenges.
Dynamics of (mis)information flow and engaging power of narratives
The debate around misinformation and its potentially detrimental effects on public opinion is complex and multifaceted, to the extent that even the relevant academic research has not found unanimity on the prevalence and consumption of misinformation compared with mainstream content. The methodological framework presented here emphasises the importance of considering data representative of the complexity of the phenomenon and metrics that control for possible scale effects. By combining statistical, econometric and machine learning models, we shed light on the real impact of misinformation about a subject of general interest and social relevance, such as vaccines, on both the information available to citizens and their news diet. Our results show the prominent role achieved by misinformation sources in the news ecosystem, but also - and above all - the inability of mainstream media to drive the public debate over time on issues that are particularly sensitive and emotional. Taking properly account for the temporal dynamics of public debate seems crucial to prevent the latter from moving into uncontrolled spaces where false narratives are more easily conveyed and entrenched.
USER-VLM 360: Personalized Vision Language Models with User-aware Tuning for Social Human-Robot Interactions
The integration of vision-language models into robotic systems constitutes a significant advancement in enabling machines to interact with their surroundings in a more intuitive manner. While VLMs offer rich multimodal reasoning, existing approaches lack user-specific adaptability, often relying on generic interaction paradigms that fail to account for individual behavioral, contextual, or socio-emotional nuances. When customization is attempted, ethical concerns arise from unmitigated biases in user data, risking exclusion or unfair treatment. To address these dual challenges, we propose User-VLM 360{\deg}, a holistic framework integrating multimodal user modeling with bias-aware optimization. Our approach features: (1) user-aware tuning that adapts interactions in real time using visual-linguistic signals; (2) bias mitigation via preference optimization; and (3) curated 360{\deg} socio-emotive interaction datasets annotated with demographic, emotion, and relational metadata. Evaluations across eight benchmarks demonstrate state-of-the-art results: +35.3% F1 in personalized VQA, +47.5% F1 in facial features understanding, 15% bias reduction, and 30X speedup over baselines. Ablation studies confirm component efficacy, and deployment on the Pepper robot validates real-time adaptability across diverse users. We open-source parameter-efficient 3B/10B models and an ethical verification framework for responsible adaptation.
"They are uncultured": Unveiling Covert Harms and Social Threats in LLM Generated Conversations
Large language models (LLMs) have emerged as an integral part of modern societies, powering user-facing applications such as personal assistants and enterprise applications like recruitment tools. Despite their utility, research indicates that LLMs perpetuate systemic biases. Yet, prior works on LLM harms predominantly focus on Western concepts like race and gender, often overlooking cultural concepts from other parts of the world. Additionally, these studies typically investigate "harm" as a singular dimension, ignoring the various and subtle forms in which harms manifest. To address this gap, we introduce the Covert Harms and Social Threats (CHAST), a set of seven metrics grounded in social science literature. We utilize evaluation models aligned with human assessments to examine the presence of covert harms in LLM-generated conversations, particularly in the context of recruitment. Our experiments reveal that seven out of the eight LLMs included in this study generated conversations riddled with CHAST, characterized by malign views expressed in seemingly neutral language unlikely to be detected by existing methods. Notably, these LLMs manifested more extreme views and opinions when dealing with non-Western concepts like caste, compared to Western ones such as race.
Multilingual Twitter Corpus and Baselines for Evaluating Demographic Bias in Hate Speech Recognition
Existing research on fairness evaluation of document classification models mainly uses synthetic monolingual data without ground truth for author demographic attributes. In this work, we assemble and publish a multilingual Twitter corpus for the task of hate speech detection with inferred four author demographic factors: age, country, gender and race/ethnicity. The corpus covers five languages: English, Italian, Polish, Portuguese and Spanish. We evaluate the inferred demographic labels with a crowdsourcing platform, Figure Eight. To examine factors that can cause biases, we take an empirical analysis of demographic predictability on the English corpus. We measure the performance of four popular document classifiers and evaluate the fairness and bias of the baseline classifiers on the author-level demographic attributes.
BiaSWE: An Expert Annotated Dataset for Misogyny Detection in Swedish
In this study, we introduce the process for creating BiaSWE, an expert-annotated dataset tailored for misogyny detection in the Swedish language. To address the cultural and linguistic specificity of misogyny in Swedish, we collaborated with experts from the social sciences and humanities. Our interdisciplinary team developed a rigorous annotation process, incorporating both domain knowledge and language expertise, to capture the nuances of misogyny in a Swedish context. This methodology ensures that the dataset is not only culturally relevant but also aligned with broader efforts in bias detection for low-resource languages. The dataset, along with the annotation guidelines, is publicly available for further research.
A Unified Framework and Dataset for Assessing Gender Bias in Vision-Language Models
Large vision-language models (VLMs) are widely getting adopted in industry and academia. In this work we build a unified framework to systematically evaluate gender-profession bias in VLMs. Our evaluation encompasses all supported inference modes of the recent VLMs, including image-to-text, text-to-text, text-to-image, and image-to-image. We construct a synthetic, high-quality dataset of text and images that blurs gender distinctions across professional actions to benchmark gender bias. In our benchmarking of recent vision-language models (VLMs), we observe that different input-output modalities result in distinct bias magnitudes and directions. We hope our work will help guide future progress in improving VLMs to learn socially unbiased representations. We will release our data and code.