Papers
arxiv:1906.07337

Measuring Bias in Contextualized Word Representations

Published on Jun 18, 2019
Authors:
,
,
,
,

Abstract

Contextual word embeddings such as BERT have achieved state of the art performance in numerous NLP tasks. Since they are optimized to capture the statistical properties of training data, they tend to pick up on and amplify social stereotypes present in the data as well. In this study, we (1)~propose a template-based method to quantify bias in BERT; (2)~show that this method obtains more consistent results in capturing social biases than the traditional cosine based method; and (3)~conduct a case study, evaluating gender bias in a downstream task of Gender Pronoun Resolution. Although our case study focuses on gender bias, the proposed technique is generalizable to unveiling other biases, including in multiclass settings, such as racial and religious biases.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/1906.07337 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 1

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.