new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 14

ELLA: Equip Diffusion Models with LLM for Enhanced Semantic Alignment

Diffusion models have demonstrated remarkable performance in the domain of text-to-image generation. However, most widely used models still employ CLIP as their text encoder, which constrains their ability to comprehend dense prompts, encompassing multiple objects, detailed attributes, complex relationships, long-text alignment, etc. In this paper, we introduce an Efficient Large Language Model Adapter, termed ELLA, which equips text-to-image diffusion models with powerful Large Language Models (LLM) to enhance text alignment without training of either U-Net or LLM. To seamlessly bridge two pre-trained models, we investigate a range of semantic alignment connector designs and propose a novel module, the Timestep-Aware Semantic Connector (TSC), which dynamically extracts timestep-dependent conditions from LLM. Our approach adapts semantic features at different stages of the denoising process, assisting diffusion models in interpreting lengthy and intricate prompts over sampling timesteps. Additionally, ELLA can be readily incorporated with community models and tools to improve their prompt-following capabilities. To assess text-to-image models in dense prompt following, we introduce Dense Prompt Graph Benchmark (DPG-Bench), a challenging benchmark consisting of 1K dense prompts. Extensive experiments demonstrate the superiority of ELLA in dense prompt following compared to state-of-the-art methods, particularly in multiple object compositions involving diverse attributes and relationships.

SINC: Spatial Composition of 3D Human Motions for Simultaneous Action Generation

Our goal is to synthesize 3D human motions given textual inputs describing simultaneous actions, for example 'waving hand' while 'walking' at the same time. We refer to generating such simultaneous movements as performing 'spatial compositions'. In contrast to temporal compositions that seek to transition from one action to another, spatial compositing requires understanding which body parts are involved in which action, to be able to move them simultaneously. Motivated by the observation that the correspondence between actions and body parts is encoded in powerful language models, we extract this knowledge by prompting GPT-3 with text such as "what are the body parts involved in the action <action name>?", while also providing the parts list and few-shot examples. Given this action-part mapping, we combine body parts from two motions together and establish the first automated method to spatially compose two actions. However, training data with compositional actions is always limited by the combinatorics. Hence, we further create synthetic data with this approach, and use it to train a new state-of-the-art text-to-motion generation model, called SINC ("SImultaneous actioN Compositions for 3D human motions"). In our experiments, that training with such GPT-guided synthetic data improves spatial composition generation over baselines. Our code is publicly available at https://sinc.is.tue.mpg.de/.

MMCOMPOSITION: Revisiting the Compositionality of Pre-trained Vision-Language Models

The advent of large Vision-Language Models (VLMs) has significantly advanced multimodal understanding, enabling more sophisticated and accurate integration of visual and textual information across various tasks, including image and video captioning, visual question answering, and cross-modal retrieval. Despite VLMs' superior capabilities, researchers lack a comprehensive understanding of their compositionality -- the ability to understand and produce novel combinations of known visual and textual components. Prior benchmarks provide only a relatively rough compositionality evaluation from the perspectives of objects, relations, and attributes while neglecting deeper reasoning about object interactions, counting, and complex compositions. However, compositionality is a critical ability that facilitates coherent reasoning and understanding across modalities for VLMs. To address this limitation, we propose MMCOMPOSITION, a novel human-annotated benchmark for comprehensively and accurately evaluating VLMs' compositionality. Our proposed benchmark serves as a complement to these earlier works. With MMCOMPOSITION, we can quantify and explore the compositionality of the mainstream VLMs. Surprisingly, we find GPT-4o's compositionality inferior to the best open-source model, and we analyze the underlying reasons. Our experimental analysis reveals the limitations of VLMs in fine-grained compositional perception and reasoning, and points to areas for improvement in VLM design and training. Resources available at: https://hanghuacs.github.io/MMComposition/

Compositional Scene Representation Learning via Reconstruction: A Survey

Visual scenes are composed of visual concepts and have the property of combinatorial explosion. An important reason for humans to efficiently learn from diverse visual scenes is the ability of compositional perception, and it is desirable for artificial intelligence to have similar abilities. Compositional scene representation learning is a task that enables such abilities. In recent years, various methods have been proposed to apply deep neural networks, which have been proven to be advantageous in representation learning, to learn compositional scene representations via reconstruction, advancing this research direction into the deep learning era. Learning via reconstruction is advantageous because it may utilize massive unlabeled data and avoid costly and laborious data annotation. In this survey, we first outline the current progress on reconstruction-based compositional scene representation learning with deep neural networks, including development history and categorizations of existing methods from the perspectives of the modeling of visual scenes and the inference of scene representations; then provide benchmarks, including an open source toolbox to reproduce the benchmark experiments, of representative methods that consider the most extensively studied problem setting and form the foundation for other methods; and finally discuss the limitations of existing methods and future directions of this research topic.

Object-Compositional Neural Implicit Surfaces

The neural implicit representation has shown its effectiveness in novel view synthesis and high-quality 3D reconstruction from multi-view images. However, most approaches focus on holistic scene representation yet ignore individual objects inside it, thus limiting potential downstream applications. In order to learn object-compositional representation, a few works incorporate the 2D semantic map as a cue in training to grasp the difference between objects. But they neglect the strong connections between object geometry and instance semantic information, which leads to inaccurate modeling of individual instance. This paper proposes a novel framework, ObjectSDF, to build an object-compositional neural implicit representation with high fidelity in 3D reconstruction and object representation. Observing the ambiguity of conventional volume rendering pipelines, we model the scene by combining the Signed Distance Functions (SDF) of individual object to exert explicit surface constraint. The key in distinguishing different instances is to revisit the strong association between an individual object's SDF and semantic label. Particularly, we convert the semantic information to a function of object SDF and develop a unified and compact representation for scene and objects. Experimental results show the superiority of ObjectSDF framework in representing both the holistic object-compositional scene and the individual instances. Code can be found at https://qianyiwu.github.io/objectsdf/

Crafting Parts for Expressive Object Composition

Text-to-image generation from large generative models like Stable Diffusion, DALLE-2, etc., have become a common base for various tasks due to their superior quality and extensive knowledge bases. As image composition and generation are creative processes the artists need control over various parts of the images being generated. We find that just adding details about parts in the base text prompt either leads to an entirely different image (e.g., missing/incorrect identity) or the extra part details simply being ignored. To mitigate these issues, we introduce PartCraft, which enables image generation based on fine-grained part-level details specified for objects in the base text prompt. This allows more control for artists and enables novel object compositions by combining distinctive object parts. PartCraft first localizes object parts by denoising the object region from a specific diffusion process. This enables each part token to be localized to the right object region. After obtaining part masks, we run a localized diffusion process in each of the part regions based on fine-grained part descriptions and combine them to produce the final image. All the stages of PartCraft are based on repurposing a pre-trained diffusion model, which enables it to generalize across various domains without training. We demonstrate the effectiveness of part-level control provided by PartCraft qualitatively through visual examples and quantitatively in comparison to the contemporary baselines.

Training-Free Structured Diffusion Guidance for Compositional Text-to-Image Synthesis

Large-scale diffusion models have achieved state-of-the-art results on text-to-image synthesis (T2I) tasks. Despite their ability to generate high-quality yet creative images, we observe that attribution-binding and compositional capabilities are still considered major challenging issues, especially when involving multiple objects. In this work, we improve the compositional skills of T2I models, specifically more accurate attribute binding and better image compositions. To do this, we incorporate linguistic structures with the diffusion guidance process based on the controllable properties of manipulating cross-attention layers in diffusion-based T2I models. We observe that keys and values in cross-attention layers have strong semantic meanings associated with object layouts and content. Therefore, we can better preserve the compositional semantics in the generated image by manipulating the cross-attention representations based on linguistic insights. Built upon Stable Diffusion, a SOTA T2I model, our structured cross-attention design is efficient that requires no additional training samples. We achieve better compositional skills in qualitative and quantitative results, leading to a 5-8% advantage in head-to-head user comparison studies. Lastly, we conduct an in-depth analysis to reveal potential causes of incorrect image compositions and justify the properties of cross-attention layers in the generation process.

FINECAPTION: Compositional Image Captioning Focusing on Wherever You Want at Any Granularity

The advent of large Vision-Language Models (VLMs) has significantly advanced multimodal tasks, enabling more sophisticated and accurate reasoning across various applications, including image and video captioning, visual question answering, and cross-modal retrieval. Despite their superior capabilities, VLMs struggle with fine-grained image regional composition information perception. Specifically, they have difficulty accurately aligning the segmentation masks with the corresponding semantics and precisely describing the compositional aspects of the referred regions. However, compositionality - the ability to understand and generate novel combinations of known visual and textual components - is critical for facilitating coherent reasoning and understanding across modalities by VLMs. To address this issue, we propose FINECAPTION, a novel VLM that can recognize arbitrary masks as referential inputs and process high-resolution images for compositional image captioning at different granularity levels. To support this endeavor, we introduce COMPOSITIONCAP, a new dataset for multi-grained region compositional image captioning, which introduces the task of compositional attribute-aware regional image captioning. Empirical results demonstrate the effectiveness of our proposed model compared to other state-of-the-art VLMs. Additionally, we analyze the capabilities of current VLMs in recognizing various visual prompts for compositional region image captioning, highlighting areas for improvement in VLM design and training.

Conditional Cross Attention Network for Multi-Space Embedding without Entanglement in Only a SINGLE Network

Many studies in vision tasks have aimed to create effective embedding spaces for single-label object prediction within an image. However, in reality, most objects possess multiple specific attributes, such as shape, color, and length, with each attribute composed of various classes. To apply models in real-world scenarios, it is essential to be able to distinguish between the granular components of an object. Conventional approaches to embedding multiple specific attributes into a single network often result in entanglement, where fine-grained features of each attribute cannot be identified separately. To address this problem, we propose a Conditional Cross-Attention Network that induces disentangled multi-space embeddings for various specific attributes with only a single backbone. Firstly, we employ a cross-attention mechanism to fuse and switch the information of conditions (specific attributes), and we demonstrate its effectiveness through a diverse visualization example. Secondly, we leverage the vision transformer for the first time to a fine-grained image retrieval task and present a simple yet effective framework compared to existing methods. Unlike previous studies where performance varied depending on the benchmark dataset, our proposed method achieved consistent state-of-the-art performance on the FashionAI, DARN, DeepFashion, and Zappos50K benchmark datasets.

MultiEdits: Simultaneous Multi-Aspect Editing with Text-to-Image Diffusion Models

Text-driven image synthesis has made significant advancements with the development of diffusion models, transforming how visual content is generated from text prompts. Despite these advances, text-driven image editing, a key area in computer graphics, faces unique challenges. A major challenge is making simultaneous edits across multiple objects or attributes. Applying these methods sequentially for multi-aspect edits increases computational demands and efficiency losses. In this paper, we address these challenges with significant contributions. Our main contribution is the development of MultiEdits, a method that seamlessly manages simultaneous edits across multiple attributes. In contrast to previous approaches, MultiEdits not only preserves the quality of single attribute edits but also significantly improves the performance of multitasking edits. This is achieved through an innovative attention distribution mechanism and a multi-branch design that operates across several processing heads. Additionally, we introduce the PIE-Bench++ dataset, an expansion of the original PIE-Bench dataset, to better support evaluating image-editing tasks involving multiple objects and attributes simultaneously. This dataset is a benchmark for evaluating text-driven image editing methods in multifaceted scenarios. Dataset and code are available at https://mingzhenhuang.com/projects/MultiEdits.html.

IterComp: Iterative Composition-Aware Feedback Learning from Model Gallery for Text-to-Image Generation

Advanced diffusion models like RPG, Stable Diffusion 3 and FLUX have made notable strides in compositional text-to-image generation. However, these methods typically exhibit distinct strengths for compositional generation, with some excelling in handling attribute binding and others in spatial relationships. This disparity highlights the need for an approach that can leverage the complementary strengths of various models to comprehensively improve the composition capability. To this end, we introduce IterComp, a novel framework that aggregates composition-aware model preferences from multiple models and employs an iterative feedback learning approach to enhance compositional generation. Specifically, we curate a gallery of six powerful open-source diffusion models and evaluate their three key compositional metrics: attribute binding, spatial relationships, and non-spatial relationships. Based on these metrics, we develop a composition-aware model preference dataset comprising numerous image-rank pairs to train composition-aware reward models. Then, we propose an iterative feedback learning method to enhance compositionality in a closed-loop manner, enabling the progressive self-refinement of both the base diffusion model and reward models over multiple iterations. Theoretical proof demonstrates the effectiveness and extensive experiments show our significant superiority over previous SOTA methods (e.g., Omost and FLUX), particularly in multi-category object composition and complex semantic alignment. IterComp opens new research avenues in reward feedback learning for diffusion models and compositional generation. Code: https://github.com/YangLing0818/IterComp

Generating Compositional Scenes via Text-to-image RGBA Instance Generation

Text-to-image diffusion generative models can generate high quality images at the cost of tedious prompt engineering. Controllability can be improved by introducing layout conditioning, however existing methods lack layout editing ability and fine-grained control over object attributes. The concept of multi-layer generation holds great potential to address these limitations, however generating image instances concurrently to scene composition limits control over fine-grained object attributes, relative positioning in 3D space and scene manipulation abilities. In this work, we propose a novel multi-stage generation paradigm that is designed for fine-grained control, flexibility and interactivity. To ensure control over instance attributes, we devise a novel training paradigm to adapt a diffusion model to generate isolated scene components as RGBA images with transparency information. To build complex images, we employ these pre-generated instances and introduce a multi-layer composite generation process that smoothly assembles components in realistic scenes. Our experiments show that our RGBA diffusion model is capable of generating diverse and high quality instances with precise control over object attributes. Through multi-layer composition, we demonstrate that our approach allows to build and manipulate images from highly complex prompts with fine-grained control over object appearance and location, granting a higher degree of control than competing methods.

NCHO: Unsupervised Learning for Neural 3D Composition of Humans and Objects

Deep generative models have been recently extended to synthesizing 3D digital humans. However, previous approaches treat clothed humans as a single chunk of geometry without considering the compositionality of clothing and accessories. As a result, individual items cannot be naturally composed into novel identities, leading to limited expressiveness and controllability of generative 3D avatars. While several methods attempt to address this by leveraging synthetic data, the interaction between humans and objects is not authentic due to the domain gap, and manual asset creation is difficult to scale for a wide variety of objects. In this work, we present a novel framework for learning a compositional generative model of humans and objects (backpacks, coats, scarves, and more) from real-world 3D scans. Our compositional model is interaction-aware, meaning the spatial relationship between humans and objects, and the mutual shape change by physical contact is fully incorporated. The key challenge is that, since humans and objects are in contact, their 3D scans are merged into a single piece. To decompose them without manual annotations, we propose to leverage two sets of 3D scans of a single person with and without objects. Our approach learns to decompose objects and naturally compose them back into a generative human model in an unsupervised manner. Despite our simple setup requiring only the capture of a single subject with objects, our experiments demonstrate the strong generalization of our model by enabling the natural composition of objects to diverse identities in various poses and the composition of multiple objects, which is unseen in training data. https://taeksuu.github.io/ncho/

Cycle Consistency Driven Object Discovery

Developing deep learning models that effectively learn object-centric representations, akin to human cognition, remains a challenging task. Existing approaches facilitate object discovery by representing objects as fixed-size vectors, called ``slots'' or ``object files''. While these approaches have shown promise in certain scenarios, they still exhibit certain limitations. First, they rely on architectural priors which can be unreliable and usually require meticulous engineering to identify the correct objects. Second, there has been a notable gap in investigating the practical utility of these representations in downstream tasks. To address the first limitation, we introduce a method that explicitly optimizes the constraint that each object in a scene should be associated with a distinct slot. We formalize this constraint by introducing consistency objectives which are cyclic in nature. By integrating these consistency objectives into various existing slot-based object-centric methods, we showcase substantial improvements in object-discovery performance. These enhancements consistently hold true across both synthetic and real-world scenes, underscoring the effectiveness and adaptability of the proposed approach. To tackle the second limitation, we apply the learned object-centric representations from the proposed method to two downstream reinforcement learning tasks, demonstrating considerable performance enhancements compared to conventional slot-based and monolithic representation learning methods. Our results suggest that the proposed approach not only improves object discovery, but also provides richer features for downstream tasks.

LLM Blueprint: Enabling Text-to-Image Generation with Complex and Detailed Prompts

Diffusion-based generative models have significantly advanced text-to-image generation but encounter challenges when processing lengthy and intricate text prompts describing complex scenes with multiple objects. While excelling in generating images from short, single-object descriptions, these models often struggle to faithfully capture all the nuanced details within longer and more elaborate textual inputs. In response, we present a novel approach leveraging Large Language Models (LLMs) to extract critical components from text prompts, including bounding box coordinates for foreground objects, detailed textual descriptions for individual objects, and a succinct background context. These components form the foundation of our layout-to-image generation model, which operates in two phases. The initial Global Scene Generation utilizes object layouts and background context to create an initial scene but often falls short in faithfully representing object characteristics as specified in the prompts. To address this limitation, we introduce an Iterative Refinement Scheme that iteratively evaluates and refines box-level content to align them with their textual descriptions, recomposing objects as needed to ensure consistency. Our evaluation on complex prompts featuring multiple objects demonstrates a substantial improvement in recall compared to baseline diffusion models. This is further validated by a user study, underscoring the efficacy of our approach in generating coherent and detailed scenes from intricate textual inputs.

Contextual Interaction via Primitive-based Adversarial Training For Compositional Zero-shot Learning

Compositional Zero-shot Learning (CZSL) aims to identify novel compositions via known attribute-object pairs. The primary challenge in CZSL tasks lies in the significant discrepancies introduced by the complex interaction between the visual primitives of attribute and object, consequently decreasing the classification performance towards novel compositions. Previous remarkable works primarily addressed this issue by focusing on disentangling strategy or utilizing object-based conditional probabilities to constrain the selection space of attributes. Unfortunately, few studies have explored the problem from the perspective of modeling the mechanism of visual primitive interactions. Inspired by the success of vanilla adversarial learning in Cross-Domain Few-Shot Learning, we take a step further and devise a model-agnostic and Primitive-Based Adversarial training (PBadv) method to deal with this problem. Besides, the latest studies highlight the weakness of the perception of hard compositions even under data-balanced conditions. To this end, we propose a novel over-sampling strategy with object-similarity guidance to augment target compositional training data. We performed detailed quantitative analysis and retrieval experiments on well-established datasets, such as UT-Zappos50K, MIT-States, and C-GQA, to validate the effectiveness of our proposed method, and the state-of-the-art (SOTA) performance demonstrates the superiority of our approach. The code is available at https://github.com/lisuyi/PBadv_czsl.

Generative Compositional Augmentations for Scene Graph Prediction

Inferring objects and their relationships from an image in the form of a scene graph is useful in many applications at the intersection of vision and language. We consider a challenging problem of compositional generalization that emerges in this task due to a long tail data distribution. Current scene graph generation models are trained on a tiny fraction of the distribution corresponding to the most frequent compositions, e.g. <cup, on, table>. However, test images might contain zero- and few-shot compositions of objects and relationships, e.g. <cup, on, surfboard>. Despite each of the object categories and the predicate (e.g. 'on') being frequent in the training data, the models often fail to properly understand such unseen or rare compositions. To improve generalization, it is natural to attempt increasing the diversity of the training distribution. However, in the graph domain this is non-trivial. To that end, we propose a method to synthesize rare yet plausible scene graphs by perturbing real ones. We then propose and empirically study a model based on conditional generative adversarial networks (GANs) that allows us to generate visual features of perturbed scene graphs and learn from them in a joint fashion. When evaluated on the Visual Genome dataset, our approach yields marginal, but consistent improvements in zero- and few-shot metrics. We analyze the limitations of our approach indicating promising directions for future research.

LoMOE: Localized Multi-Object Editing via Multi-Diffusion

Recent developments in the field of diffusion models have demonstrated an exceptional capacity to generate high-quality prompt-conditioned image edits. Nevertheless, previous approaches have primarily relied on textual prompts for image editing, which tend to be less effective when making precise edits to specific objects or fine-grained regions within a scene containing single/multiple objects. We introduce a novel framework for zero-shot localized multi-object editing through a multi-diffusion process to overcome this challenge. This framework empowers users to perform various operations on objects within an image, such as adding, replacing, or editing many objects in a complex scene in one pass. Our approach leverages foreground masks and corresponding simple text prompts that exert localized influences on the target regions resulting in high-fidelity image editing. A combination of cross-attention and background preservation losses within the latent space ensures that the characteristics of the object being edited are preserved while simultaneously achieving a high-quality, seamless reconstruction of the background with fewer artifacts compared to the current methods. We also curate and release a dataset dedicated to multi-object editing, named LoMOE-Bench. Our experiments against existing state-of-the-art methods demonstrate the improved effectiveness of our approach in terms of both image editing quality and inference speed.

CLIP-MoE: Towards Building Mixture of Experts for CLIP with Diversified Multiplet Upcycling

In recent years, Contrastive Language-Image Pre-training (CLIP) has become a cornerstone in multimodal intelligence. However, recent studies have identified that the information loss in the CLIP encoding process is substantial, and CLIP tends to capture only coarse-grained features from the input. This deficiency significantly limits the ability of a single CLIP model to handle images rich in visual detail. In this work, we propose a simple yet effective model-agnostic strategy, Diversified Multiplet Upcycling (DMU), for CLIP. DMU efficiently fine-tunes a series of CLIP models that capture different feature spaces, from a dense pre-trained CLIP checkpoint, sharing parameters except for the Feed-Forward Network (FFN). These models can then be transformed into a CLIP-MoE with a larger model capacity, leading to significantly enhanced performance with minimal computational overhead. To the best of our knowledge, Diversified Multiplet Upcycling is the first approach to introduce sparsely activated MoE into CLIP foundation models. Extensive experiments demonstrate the significant performance of CLIP-MoE across various zero-shot retrieval, zero-shot image classification tasks, and downstream Multimodal Large Language Model (MLLM) benchmarks by serving as a vision encoder. Furthermore, Diversified Multiplet Upcycling enables the conversion of any dense CLIP model into CLIP-MoEs, which can seamlessly replace CLIP in a plug-and-play manner without requiring further adaptation in downstream frameworks. Through Diversified Multiplet Upcycling, we aim to provide valuable insights for future research on developing more efficient and effective multimodal learning systems.

Object-aware Inversion and Reassembly for Image Editing

By comparing the original and target prompts in editing task, we can obtain numerous editing pairs, each comprising an object and its corresponding editing target. To allow editability while maintaining fidelity to the input image, existing editing methods typically involve a fixed number of inversion steps that project the whole input image to its noisier latent representation, followed by a denoising process guided by the target prompt. However, we find that the optimal number of inversion steps for achieving ideal editing results varies significantly among different editing pairs, owing to varying editing difficulties. Therefore, the current literature, which relies on a fixed number of inversion steps, produces sub-optimal generation quality, especially when handling multiple editing pairs in a natural image. To this end, we propose a new image editing paradigm, dubbed Object-aware Inversion and Reassembly (OIR), to enable object-level fine-grained editing. Specifically, we design a new search metric, which determines the optimal inversion steps for each editing pair, by jointly considering the editability of the target and the fidelity of the non-editing region. We use our search metric to find the optimal inversion step for each editing pair when editing an image. We then edit these editing pairs separately to avoid concept mismatch. Subsequently, we propose an additional reassembly step to seamlessly integrate the respective editing results and the non-editing region to obtain the final edited image. To systematically evaluate the effectiveness of our method, we collect two datasets for benchmarking single- and multi-object editing, respectively. Experiments demonstrate that our method achieves superior performance in editing object shapes, colors, materials, categories, etc., especially in multi-object editing scenarios.

Multi-modal Generation via Cross-Modal In-Context Learning

In this work, we study the problem of generating novel images from complex multimodal prompt sequences. While existing methods achieve promising results for text-to-image generation, they often struggle to capture fine-grained details from lengthy prompts and maintain contextual coherence within prompt sequences. Moreover, they often result in misaligned image generation for prompt sequences featuring multiple objects. To address this, we propose a Multi-modal Generation via Cross-Modal In-Context Learning (MGCC) method that generates novel images from complex multimodal prompt sequences by leveraging the combined capabilities of large language models (LLMs) and diffusion models. Our MGCC comprises a novel Cross-Modal Refinement module to explicitly learn cross-modal dependencies between the text and image in the LLM embedding space, and a contextual object grounding module to generate object bounding boxes specifically targeting scenes with multiple objects. Our MGCC demonstrates a diverse range of multimodal capabilities, like novel image generation, the facilitation of multimodal dialogue, and generation of texts. Experimental evaluations on two benchmark datasets, demonstrate the effectiveness of our method. On Visual Story Generation (VIST) dataset with multimodal inputs, our MGCC achieves a CLIP Similarity score of 0.652 compared to SOTA GILL 0.641. Similarly, on Visual Dialogue Context (VisDial) having lengthy dialogue sequences, our MGCC achieves an impressive CLIP score of 0.660, largely outperforming existing SOTA method scoring 0.645. Code: https://github.com/VIROBO-15/MGCC

StableSemantics: A Synthetic Language-Vision Dataset of Semantic Representations in Naturalistic Images

Understanding the semantics of visual scenes is a fundamental challenge in Computer Vision. A key aspect of this challenge is that objects sharing similar semantic meanings or functions can exhibit striking visual differences, making accurate identification and categorization difficult. Recent advancements in text-to-image frameworks have led to models that implicitly capture natural scene statistics. These frameworks account for the visual variability of objects, as well as complex object co-occurrences and sources of noise such as diverse lighting conditions. By leveraging large-scale datasets and cross-attention conditioning, these models generate detailed and contextually rich scene representations. This capability opens new avenues for improving object recognition and scene understanding in varied and challenging environments. Our work presents StableSemantics, a dataset comprising 224 thousand human-curated prompts, processed natural language captions, over 2 million synthetic images, and 10 million attention maps corresponding to individual noun chunks. We explicitly leverage human-generated prompts that correspond to visually interesting stable diffusion generations, provide 10 generations per phrase, and extract cross-attention maps for each image. We explore the semantic distribution of generated images, examine the distribution of objects within images, and benchmark captioning and open vocabulary segmentation methods on our data. To the best of our knowledge, we are the first to release a diffusion dataset with semantic attributions. We expect our proposed dataset to catalyze advances in visual semantic understanding and provide a foundation for developing more sophisticated and effective visual models. Website: https://stablesemantics.github.io/StableSemantics

Resolving Multi-Condition Confusion for Finetuning-Free Personalized Image Generation

Personalized text-to-image generation methods can generate customized images based on the reference images, which have garnered wide research interest. Recent methods propose a finetuning-free approach with a decoupled cross-attention mechanism to generate personalized images requiring no test-time finetuning. However, when multiple reference images are provided, the current decoupled cross-attention mechanism encounters the object confusion problem and fails to map each reference image to its corresponding object, thereby seriously limiting its scope of application. To address the object confusion problem, in this work we investigate the relevance of different positions of the latent image features to the target object in diffusion model, and accordingly propose a weighted-merge method to merge multiple reference image features into the corresponding objects. Next, we integrate this weighted-merge method into existing pre-trained models and continue to train the model on a multi-object dataset constructed from the open-sourced SA-1B dataset. To mitigate object confusion and reduce training costs, we propose an object quality score to estimate the image quality for the selection of high-quality training samples. Furthermore, our weighted-merge training framework can be employed on single-object generation when a single object has multiple reference images. The experiments verify that our method achieves superior performance to the state-of-the-arts on the Concept101 dataset and DreamBooth dataset of multi-object personalized image generation, and remarkably improves the performance on single-object personalized image generation. Our code is available at https://github.com/hqhQAQ/MIP-Adapter.

FreeCustom: Tuning-Free Customized Image Generation for Multi-Concept Composition

Benefiting from large-scale pre-trained text-to-image (T2I) generative models, impressive progress has been achieved in customized image generation, which aims to generate user-specified concepts. Existing approaches have extensively focused on single-concept customization and still encounter challenges when it comes to complex scenarios that involve combining multiple concepts. These approaches often require retraining/fine-tuning using a few images, leading to time-consuming training processes and impeding their swift implementation. Furthermore, the reliance on multiple images to represent a singular concept increases the difficulty of customization. To this end, we propose FreeCustom, a novel tuning-free method to generate customized images of multi-concept composition based on reference concepts, using only one image per concept as input. Specifically, we introduce a new multi-reference self-attention (MRSA) mechanism and a weighted mask strategy that enables the generated image to access and focus more on the reference concepts. In addition, MRSA leverages our key finding that input concepts are better preserved when providing images with context interactions. Experiments show that our method's produced images are consistent with the given concepts and better aligned with the input text. Our method outperforms or performs on par with other training-based methods in terms of multi-concept composition and single-concept customization, but is simpler. Codes can be found at https://github.com/aim-uofa/FreeCustom.

Mastering Text-to-Image Diffusion: Recaptioning, Planning, and Generating with Multimodal LLMs

Diffusion models have exhibit exceptional performance in text-to-image generation and editing. However, existing methods often face challenges when handling complex text prompts that involve multiple objects with multiple attributes and relationships. In this paper, we propose a brand new training-free text-to-image generation/editing framework, namely Recaption, Plan and Generate (RPG), harnessing the powerful chain-of-thought reasoning ability of multimodal LLMs to enhance the compositionality of text-to-image diffusion models. Our approach employs the MLLM as a global planner to decompose the process of generating complex images into multiple simpler generation tasks within subregions. We propose complementary regional diffusion to enable region-wise compositional generation. Furthermore, we integrate text-guided image generation and editing within the proposed RPG in a closed-loop fashion, thereby enhancing generalization ability. Extensive experiments demonstrate our RPG outperforms state-of-the-art text-to-image diffusion models, including DALL-E 3 and SDXL, particularly in multi-category object composition and text-image semantic alignment. Notably, our RPG framework exhibits wide compatibility with various MLLM architectures (e.g., MiniGPT-4) and diffusion backbones (e.g., ControlNet). Our code is available at: https://github.com/YangLing0818/RPG-DiffusionMaster

When and why vision-language models behave like bags-of-words, and what to do about it?

Despite the success of large vision and language models (VLMs) in many downstream applications, it is unclear how well they encode compositional information. Here, we create the Attribution, Relation, and Order (ARO) benchmark to systematically evaluate the ability of VLMs to understand different types of relationships, attributes, and order. ARO consists of Visual Genome Attribution, to test the understanding of objects' properties; Visual Genome Relation, to test for relational understanding; and COCO & Flickr30k-Order, to test for order sensitivity. ARO is orders of magnitude larger than previous benchmarks of compositionality, with more than 50,000 test cases. We show where state-of-the-art VLMs have poor relational understanding, can blunder when linking objects to their attributes, and demonstrate a severe lack of order sensitivity. VLMs are predominantly trained and evaluated on large datasets with rich compositional structure in the images and captions. Yet, training on these datasets has not been enough to address the lack of compositional understanding, and evaluating on these datasets has failed to surface this deficiency. To understand why these limitations emerge and are not represented in the standard tests, we zoom into the evaluation and training procedures. We demonstrate that it is possible to perform well on retrieval over existing datasets without using the composition and order information. Given that contrastive pretraining optimizes for retrieval on datasets with similar shortcuts, we hypothesize that this can explain why the models do not need to learn to represent compositional information. This finding suggests a natural solution: composition-aware hard negative mining. We show that a simple-to-implement modification of contrastive learning significantly improves the performance on tasks requiring understanding of order and compositionality.

MuLan: Multimodal-LLM Agent for Progressive and Interactive Multi-Object Diffusion

Existing text-to-image models still struggle to generate images of multiple objects, especially in handling their spatial positions, relative sizes, overlapping, and attribute bindings. To efficiently address these challenges, we develop a training-free Multimodal-LLM agent (MuLan), as a human painter, that can progressively generate multi-object with intricate planning and feedback control. MuLan harnesses a large language model (LLM) to decompose a prompt to a sequence of sub-tasks, each generating only one object by stable diffusion, conditioned on previously generated objects. Unlike existing LLM-grounded methods, MuLan only produces a high-level plan at the beginning while the exact size and location of each object are determined upon each sub-task by an LLM and attention guidance. Moreover, MuLan adopts a vision-language model (VLM) to provide feedback to the image generated in each sub-task and control the diffusion model to re-generate the image if it violates the original prompt. Hence, each model in every step of MuLan only needs to address an easy sub-task it is specialized for. The multi-step process also allows human users to monitor the generation process and make preferred changes at any intermediate step via text prompts, thereby improving the human-AI collaboration experience. We collect 200 prompts containing multi-objects with spatial relationships and attribute bindings from different benchmarks to evaluate MuLan. The results demonstrate the superiority of MuLan in generating multiple objects over baselines and its creativity when collaborating with human users. The code is available at https://github.com/measure-infinity/mulan-code.

PrimeComposer: Faster Progressively Combined Diffusion for Image Composition with Attention Steering

Image composition involves seamlessly integrating given objects into a specific visual context. Current training-free methods rely on composing attention weights from several samplers to guide the generator. However, since these weights are derived from disparate contexts, their combination leads to coherence confusion and loss of appearance information. These issues worsen with their excessive focus on background generation, even when unnecessary in this task. This not only impedes their swift implementation but also compromises foreground generation quality. Moreover, these methods introduce unwanted artifacts in the transition area. In this paper, we formulate image composition as a subject-based local editing task, solely focusing on foreground generation. At each step, the edited foreground is combined with the noisy background to maintain scene consistency. To address the remaining issues, we propose PrimeComposer, a faster training-free diffuser that composites the images by well-designed attention steering across different noise levels. This steering is predominantly achieved by our Correlation Diffuser, utilizing its self-attention layers at each step. Within these layers, the synthesized subject interacts with both the referenced object and background, capturing intricate details and coherent relationships. This prior information is encoded into the attention weights, which are then integrated into the self-attention layers of the generator to guide the synthesis process. Besides, we introduce a Region-constrained Cross-Attention to confine the impact of specific subject-related tokens to desired regions, addressing the unwanted artifacts shown in the prior method thereby further improving the coherence in the transition area. Our method exhibits the fastest inference efficiency and extensive experiments demonstrate our superiority both qualitatively and quantitatively.

Understanding and Mitigating Compositional Issues in Text-to-Image Generative Models

Recent text-to-image diffusion-based generative models have the stunning ability to generate highly detailed and photo-realistic images and achieve state-of-the-art low FID scores on challenging image generation benchmarks. However, one of the primary failure modes of these text-to-image generative models is in composing attributes, objects, and their associated relationships accurately into an image. In our paper, we investigate this compositionality-based failure mode and highlight that imperfect text conditioning with CLIP text-encoder is one of the primary reasons behind the inability of these models to generate high-fidelity compositional scenes. In particular, we show that (i) there exists an optimal text-embedding space that can generate highly coherent compositional scenes which shows that the output space of the CLIP text-encoder is sub-optimal, and (ii) we observe that the final token embeddings in CLIP are erroneous as they often include attention contributions from unrelated tokens in compositional prompts. Our main finding shows that the best compositional improvements can be achieved (without harming the model's FID scores) by fine-tuning {\it only} a simple linear projection on CLIP's representation space in Stable-Diffusion variants using a small set of compositional image-text pairs. This result demonstrates that the sub-optimality of the CLIP's output space is a major error source. We also show that re-weighting the erroneous attention contributions in CLIP can also lead to improved compositional performances, however these improvements are often less significant than those achieved by solely learning a linear projection head, highlighting erroneous attentions to be only a minor error source.

Compositional Visual Generation with Composable Diffusion Models

Large text-guided diffusion models, such as DALLE-2, are able to generate stunning photorealistic images given natural language descriptions. While such models are highly flexible, they struggle to understand the composition of certain concepts, such as confusing the attributes of different objects or relations between objects. In this paper, we propose an alternative structured approach for compositional generation using diffusion models. An image is generated by composing a set of diffusion models, with each of them modeling a certain component of the image. To do this, we interpret diffusion models as energy-based models in which the data distributions defined by the energy functions may be explicitly combined. The proposed method can generate scenes at test time that are substantially more complex than those seen in training, composing sentence descriptions, object relations, human facial attributes, and even generalizing to new combinations that are rarely seen in the real world. We further illustrate how our approach may be used to compose pre-trained text-guided diffusion models and generate photorealistic images containing all the details described in the input descriptions, including the binding of certain object attributes that have been shown difficult for DALLE-2. These results point to the effectiveness of the proposed method in promoting structured generalization for visual generation. Project page: https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/

RelationNet++: Bridging Visual Representations for Object Detection via Transformer Decoder

Existing object detection frameworks are usually built on a single format of object/part representation, i.e., anchor/proposal rectangle boxes in RetinaNet and Faster R-CNN, center points in FCOS and RepPoints, and corner points in CornerNet. While these different representations usually drive the frameworks to perform well in different aspects, e.g., better classification or finer localization, it is in general difficult to combine these representations in a single framework to make good use of each strength, due to the heterogeneous or non-grid feature extraction by different representations. This paper presents an attention-based decoder module similar as that in Transformer~vaswani2017attention to bridge other representations into a typical object detector built on a single representation format, in an end-to-end fashion. The other representations act as a set of key instances to strengthen the main query representation features in the vanilla detectors. Novel techniques are proposed towards efficient computation of the decoder module, including a key sampling approach and a shared location embedding approach. The proposed module is named bridging visual representations (BVR). It can perform in-place and we demonstrate its broad effectiveness in bridging other representations into prevalent object detection frameworks, including RetinaNet, Faster R-CNN, FCOS and ATSS, where about 1.5sim3.0 AP improvements are achieved. In particular, we improve a state-of-the-art framework with a strong backbone by about 2.0 AP, reaching 52.7 AP on COCO test-dev. The resulting network is named RelationNet++. The code will be available at https://github.com/microsoft/RelationNet2.

Visual Program Distillation: Distilling Tools and Programmatic Reasoning into Vision-Language Models

Solving complex visual tasks such as "Who invented the musical instrument on the right?" involves a composition of skills: understanding space, recognizing instruments, and also retrieving prior knowledge. Recent work shows promise by decomposing such tasks using a large language model (LLM) into an executable program that invokes specialized vision models. However, generated programs are error-prone: they omit necessary steps, include spurious ones, and are unable to recover when the specialized models give incorrect outputs. Moreover, they require loading multiple models, incurring high latency and computation costs. We propose Visual Program Distillation (VPD), an instruction tuning framework that produces a vision-language model (VLM) capable of solving complex visual tasks with a single forward pass. VPD distills the reasoning ability of LLMs by using them to sample multiple candidate programs, which are then executed and verified to identify a correct one. It translates each correct program into a language description of the reasoning steps, which are then distilled into a VLM. Extensive experiments show that VPD improves the VLM's ability to count, understand spatial relations, and reason compositionally. Our VPD-trained PaLI-X outperforms all prior VLMs, achieving state-of-the-art performance across complex vision tasks, including MMBench, OK-VQA, A-OKVQA, TallyQA, POPE, and Hateful Memes. An evaluation with human annotators also confirms that VPD improves model response factuality and consistency. Finally, experiments on content moderation demonstrate that VPD is also helpful for adaptation to real-world applications with limited data.

Divide and Conquer: Language Models can Plan and Self-Correct for Compositional Text-to-Image Generation

Despite significant advancements in text-to-image models for generating high-quality images, these methods still struggle to ensure the controllability of text prompts over images in the context of complex text prompts, especially when it comes to retaining object attributes and relationships. In this paper, we propose CompAgent, a training-free approach for compositional text-to-image generation, with a large language model (LLM) agent as its core. The fundamental idea underlying CompAgent is premised on a divide-and-conquer methodology. Given a complex text prompt containing multiple concepts including objects, attributes, and relationships, the LLM agent initially decomposes it, which entails the extraction of individual objects, their associated attributes, and the prediction of a coherent scene layout. These individual objects can then be independently conquered. Subsequently, the agent performs reasoning by analyzing the text, plans and employs the tools to compose these isolated objects. The verification and human feedback mechanism is finally incorporated into our agent to further correct the potential attribute errors and refine the generated images. Guided by the LLM agent, we propose a tuning-free multi-concept customization model and a layout-to-image generation model as the tools for concept composition, and a local image editing method as the tool to interact with the agent for verification. The scene layout controls the image generation process among these tools to prevent confusion among multiple objects. Extensive experiments demonstrate the superiority of our approach for compositional text-to-image generation: CompAgent achieves more than 10\% improvement on T2I-CompBench, a comprehensive benchmark for open-world compositional T2I generation. The extension to various related tasks also illustrates the flexibility of our CompAgent for potential applications.

LoRA-Composer: Leveraging Low-Rank Adaptation for Multi-Concept Customization in Training-Free Diffusion Models

Customization generation techniques have significantly advanced the synthesis of specific concepts across varied contexts. Multi-concept customization emerges as the challenging task within this domain. Existing approaches often rely on training a fusion matrix of multiple Low-Rank Adaptations (LoRAs) to merge various concepts into a single image. However, we identify this straightforward method faces two major challenges: 1) concept confusion, where the model struggles to preserve distinct individual characteristics, and 2) concept vanishing, where the model fails to generate the intended subjects. To address these issues, we introduce LoRA-Composer, a training-free framework designed for seamlessly integrating multiple LoRAs, thereby enhancing the harmony among different concepts within generated images. LoRA-Composer addresses concept vanishing through concept injection constraints, enhancing concept visibility via an expanded cross-attention mechanism. To combat concept confusion, concept isolation constraints are introduced, refining the self-attention computation. Furthermore, latent re-initialization is proposed to effectively stimulate concept-specific latent within designated regions. Our extensive testing showcases a notable enhancement in LoRA-Composer's performance compared to standard baselines, especially when eliminating the image-based conditions like canny edge or pose estimations. Code is released at https://github.com/Young98CN/LoRA_Composer

Domain and Function: A Dual-Space Model of Semantic Relations and Compositions

Given appropriate representations of the semantic relations between carpenter and wood and between mason and stone (for example, vectors in a vector space model), a suitable algorithm should be able to recognize that these relations are highly similar (carpenter is to wood as mason is to stone; the relations are analogous). Likewise, with representations of dog, house, and kennel, an algorithm should be able to recognize that the semantic composition of dog and house, dog house, is highly similar to kennel (dog house and kennel are synonymous). It seems that these two tasks, recognizing relations and compositions, are closely connected. However, up to now, the best models for relations are significantly different from the best models for compositions. In this paper, we introduce a dual-space model that unifies these two tasks. This model matches the performance of the best previous models for relations and compositions. The dual-space model consists of a space for measuring domain similarity and a space for measuring function similarity. Carpenter and wood share the same domain, the domain of carpentry. Mason and stone share the same domain, the domain of masonry. Carpenter and mason share the same function, the function of artisans. Wood and stone share the same function, the function of materials. In the composition dog house, kennel has some domain overlap with both dog and house (the domains of pets and buildings). The function of kennel is similar to the function of house (the function of shelters). By combining domain and function similarities in various ways, we can model relations, compositions, and other aspects of semantics.

An Efficient General-Purpose Modular Vision Model via Multi-Task Heterogeneous Training

We present a model that can perform multiple vision tasks and can be adapted to other downstream tasks efficiently. Despite considerable progress in multi-task learning, most efforts focus on learning from multi-label data: a single image set with multiple task labels. Such multi-label data sets are rare, small, and expensive. We say heterogeneous to refer to image sets with different task labels, or to combinations of single-task datasets. Few have explored training on such heterogeneous datasets. General-purpose vision models are still dominated by single-task pretraining, and it remains unclear how to scale up multi-task models by leveraging mainstream vision datasets designed for different purposes. The challenges lie in managing large intrinsic differences among vision tasks, including data distribution, architectures, task-specific modules, dataset scales, and sampling strategies. To address these challenges, we propose to modify and scale up mixture-of-experts (MoE) vision transformers, so that they can simultaneously learn classification, detection, and segmentation on diverse mainstream vision datasets including ImageNet, COCO, and ADE20K. Our approach achieves comparable results to single-task state-of-the-art models and demonstrates strong generalization on downstream tasks. Due to its emergent modularity, this general-purpose model decomposes into high-performing components, efficiently adapting to downstream tasks. We can fine-tune it with fewer training parameters, fewer model parameters, and less computation. Additionally, its modularity allows for easy expansion in continual-learning-without-forgetting scenarios. Finally, these functions can be controlled and combined to meet various demands of downstream tasks.

Semantic Score Distillation Sampling for Compositional Text-to-3D Generation

Generating high-quality 3D assets from textual descriptions remains a pivotal challenge in computer graphics and vision research. Due to the scarcity of 3D data, state-of-the-art approaches utilize pre-trained 2D diffusion priors, optimized through Score Distillation Sampling (SDS). Despite progress, crafting complex 3D scenes featuring multiple objects or intricate interactions is still difficult. To tackle this, recent methods have incorporated box or layout guidance. However, these layout-guided compositional methods often struggle to provide fine-grained control, as they are generally coarse and lack expressiveness. To overcome these challenges, we introduce a novel SDS approach, Semantic Score Distillation Sampling (SemanticSDS), designed to effectively improve the expressiveness and accuracy of compositional text-to-3D generation. Our approach integrates new semantic embeddings that maintain consistency across different rendering views and clearly differentiate between various objects and parts. These embeddings are transformed into a semantic map, which directs a region-specific SDS process, enabling precise optimization and compositional generation. By leveraging explicit semantic guidance, our method unlocks the compositional capabilities of existing pre-trained diffusion models, thereby achieving superior quality in 3D content generation, particularly for complex objects and scenes. Experimental results demonstrate that our SemanticSDS framework is highly effective for generating state-of-the-art complex 3D content. Code: https://github.com/YangLing0818/SemanticSDS-3D

Hierarchical Visual Primitive Experts for Compositional Zero-Shot Learning

Compositional zero-shot learning (CZSL) aims to recognize unseen compositions with prior knowledge of known primitives (attribute and object). Previous works for CZSL often suffer from grasping the contextuality between attribute and object, as well as the discriminability of visual features, and the long-tailed distribution of real-world compositional data. We propose a simple and scalable framework called Composition Transformer (CoT) to address these issues. CoT employs object and attribute experts in distinctive manners to generate representative embeddings, using the visual network hierarchically. The object expert extracts representative object embeddings from the final layer in a bottom-up manner, while the attribute expert makes attribute embeddings in a top-down manner with a proposed object-guided attention module that models contextuality explicitly. To remedy biased prediction caused by imbalanced data distribution, we develop a simple minority attribute augmentation (MAA) that synthesizes virtual samples by mixing two images and oversampling minority attribute classes. Our method achieves SoTA performance on several benchmarks, including MIT-States, C-GQA, and VAW-CZSL. We also demonstrate the effectiveness of CoT in improving visual discrimination and addressing the model bias from the imbalanced data distribution. The code is available at https://github.com/HanjaeKim98/CoT.

Shepherding Slots to Objects: Towards Stable and Robust Object-Centric Learning

Object-centric learning (OCL) aspires general and compositional understanding of scenes by representing a scene as a collection of object-centric representations. OCL has also been extended to multi-view image and video datasets to apply various data-driven inductive biases by utilizing geometric or temporal information in the multi-image data. Single-view images carry less information about how to disentangle a given scene than videos or multi-view images do. Hence, owing to the difficulty of applying inductive biases, OCL for single-view images remains challenging, resulting in inconsistent learning of object-centric representation. To this end, we introduce a novel OCL framework for single-view images, SLot Attention via SHepherding (SLASH), which consists of two simple-yet-effective modules on top of Slot Attention. The new modules, Attention Refining Kernel (ARK) and Intermediate Point Predictor and Encoder (IPPE), respectively, prevent slots from being distracted by the background noise and indicate locations for slots to focus on to facilitate learning of object-centric representation. We also propose a weak semi-supervision approach for OCL, whilst our proposed framework can be used without any assistant annotation during the inference. Experiments show that our proposed method enables consistent learning of object-centric representation and achieves strong performance across four datasets. Code is available at https://github.com/object-understanding/SLASH.

GenEval: An Object-Focused Framework for Evaluating Text-to-Image Alignment

Recent breakthroughs in diffusion models, multimodal pretraining, and efficient finetuning have led to an explosion of text-to-image generative models. Given human evaluation is expensive and difficult to scale, automated methods are critical for evaluating the increasingly large number of new models. However, most current automated evaluation metrics like FID or CLIPScore only offer a holistic measure of image quality or image-text alignment, and are unsuited for fine-grained or instance-level analysis. In this paper, we introduce GenEval, an object-focused framework to evaluate compositional image properties such as object co-occurrence, position, count, and color. We show that current object detection models can be leveraged to evaluate text-to-image models on a variety of generation tasks with strong human agreement, and that other discriminative vision models can be linked to this pipeline to further verify properties like object color. We then evaluate several open-source text-to-image models and analyze their relative generative capabilities on our benchmark. We find that recent models demonstrate significant improvement on these tasks, though they are still lacking in complex capabilities such as spatial relations and attribute binding. Finally, we demonstrate how GenEval might be used to help discover existing failure modes, in order to inform development of the next generation of text-to-image models. Our code to run the GenEval framework is publicly available at https://github.com/djghosh13/geneval.

Detector Guidance for Multi-Object Text-to-Image Generation

Diffusion models have demonstrated impressive performance in text-to-image generation. They utilize a text encoder and cross-attention blocks to infuse textual information into images at a pixel level. However, their capability to generate images with text containing multiple objects is still restricted. Previous works identify the problem of information mixing in the CLIP text encoder and introduce the T5 text encoder or incorporate strong prior knowledge to assist with the alignment. We find that mixing problems also occur on the image side and in the cross-attention blocks. The noisy images can cause different objects to appear similar, and the cross-attention blocks inject information at a pixel level, leading to leakage of global object understanding and resulting in object mixing. In this paper, we introduce Detector Guidance (DG), which integrates a latent object detection model to separate different objects during the generation process. DG first performs latent object detection on cross-attention maps (CAMs) to obtain object information. Based on this information, DG then masks conflicting prompts and enhances related prompts by manipulating the following CAMs. We evaluate the effectiveness of DG using Stable Diffusion on COCO, CC, and a novel multi-related object benchmark, MRO. Human evaluations demonstrate that DG provides an 8-22\% advantage in preventing the amalgamation of conflicting concepts and ensuring that each object possesses its unique region without any human involvement and additional iterations. Our implementation is available at https://github.com/luping-liu/Detector-Guidance.

Break-for-Make: Modular Low-Rank Adaptations for Composable Content-Style Customization

Personalized generation paradigms empower designers to customize visual intellectual properties with the help of textual descriptions by tuning or adapting pre-trained text-to-image models on a few images. Recent works explore approaches for concurrently customizing both content and detailed visual style appearance. However, these existing approaches often generate images where the content and style are entangled. In this study, we reconsider the customization of content and style concepts from the perspective of parameter space construction. Unlike existing methods that utilize a shared parameter space for content and style, we propose a learning framework that separates the parameter space to facilitate individual learning of content and style, thereby enabling disentangled content and style. To achieve this goal, we introduce "partly learnable projection" (PLP) matrices to separate the original adapters into divided sub-parameter spaces. We propose "break-for-make" customization learning pipeline based on PLP, which is simple yet effective. We break the original adapters into "up projection" and "down projection", train content and style PLPs individually with the guidance of corresponding textual prompts in the separate adapters, and maintain generalization by employing a multi-correspondence projection learning strategy. Based on the adapters broken apart for separate training content and style, we then make the entity parameter space by reconstructing the content and style PLPs matrices, followed by fine-tuning the combined adapter to generate the target object with the desired appearance. Experiments on various styles, including textures, materials, and artistic style, show that our method outperforms state-of-the-art single/multiple concept learning pipelines in terms of content-style-prompt alignment.

Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations

Despite progress in perceptual tasks such as image classification, computers still perform poorly on cognitive tasks such as image description and question answering. Cognition is core to tasks that involve not just recognizing, but reasoning about our visual world. However, models used to tackle the rich content in images for cognitive tasks are still being trained using the same datasets designed for perceptual tasks. To achieve success at cognitive tasks, models need to understand the interactions and relationships between objects in an image. When asked "What vehicle is the person riding?", computers will need to identify the objects in an image as well as the relationships riding(man, carriage) and pulling(horse, carriage) in order to answer correctly that "the person is riding a horse-drawn carriage". In this paper, we present the Visual Genome dataset to enable the modeling of such relationships. We collect dense annotations of objects, attributes, and relationships within each image to learn these models. Specifically, our dataset contains over 100K images where each image has an average of 21 objects, 18 attributes, and 18 pairwise relationships between objects. We canonicalize the objects, attributes, relationships, and noun phrases in region descriptions and questions answer pairs to WordNet synsets. Together, these annotations represent the densest and largest dataset of image descriptions, objects, attributes, relationships, and question answers.

OV-PARTS: Towards Open-Vocabulary Part Segmentation

Segmenting and recognizing diverse object parts is a crucial ability in applications spanning various computer vision and robotic tasks. While significant progress has been made in object-level Open-Vocabulary Semantic Segmentation (OVSS), i.e., segmenting objects with arbitrary text, the corresponding part-level research poses additional challenges. Firstly, part segmentation inherently involves intricate boundaries, while limited annotated data compounds the challenge. Secondly, part segmentation introduces an open granularity challenge due to the diverse and often ambiguous definitions of parts in the open world. Furthermore, the large-scale vision and language models, which play a key role in the open vocabulary setting, struggle to recognize parts as effectively as objects. To comprehensively investigate and tackle these challenges, we propose an Open-Vocabulary Part Segmentation (OV-PARTS) benchmark. OV-PARTS includes refined versions of two publicly available datasets: Pascal-Part-116 and ADE20K-Part-234. And it covers three specific tasks: Generalized Zero-Shot Part Segmentation, Cross-Dataset Part Segmentation, and Few-Shot Part Segmentation, providing insights into analogical reasoning, open granularity and few-shot adapting abilities of models. Moreover, we analyze and adapt two prevailing paradigms of existing object-level OVSS methods for OV-PARTS. Extensive experimental analysis is conducted to inspire future research in leveraging foundational models for OV-PARTS. The code and dataset are available at https://github.com/OpenRobotLab/OV_PARTS.

Vision-by-Language for Training-Free Compositional Image Retrieval

Given an image and a target modification (e.g an image of the Eiffel tower and the text "without people and at night-time"), Compositional Image Retrieval (CIR) aims to retrieve the relevant target image in a database. While supervised approaches rely on annotating triplets that is costly (i.e. query image, textual modification, and target image), recent research sidesteps this need by using large-scale vision-language models (VLMs), performing Zero-Shot CIR (ZS-CIR). However, state-of-the-art approaches in ZS-CIR still require training task-specific, customized models over large amounts of image-text pairs. In this work, we propose to tackle CIR in a training-free manner via our Compositional Image Retrieval through Vision-by-Language (CIReVL), a simple, yet human-understandable and scalable pipeline that effectively recombines large-scale VLMs with large language models (LLMs). By captioning the reference image using a pre-trained generative VLM and asking a LLM to recompose the caption based on the textual target modification for subsequent retrieval via e.g. CLIP, we achieve modular language reasoning. In four ZS-CIR benchmarks, we find competitive, in-part state-of-the-art performance - improving over supervised methods. Moreover, the modularity of CIReVL offers simple scalability without re-training, allowing us to both investigate scaling laws and bottlenecks for ZS-CIR while easily scaling up to in parts more than double of previously reported results. Finally, we show that CIReVL makes CIR human-understandable by composing image and text in a modular fashion in the language domain, thereby making it intervenable, allowing to post-hoc re-align failure cases. Code will be released upon acceptance.

MultiModN- Multimodal, Multi-Task, Interpretable Modular Networks

Predicting multiple real-world tasks in a single model often requires a particularly diverse feature space. Multimodal (MM) models aim to extract the synergistic predictive potential of multiple data types to create a shared feature space with aligned semantic meaning across inputs of drastically varying sizes (i.e. images, text, sound). Most current MM architectures fuse these representations in parallel, which not only limits their interpretability but also creates a dependency on modality availability. We present MultiModN, a multimodal, modular network that fuses latent representations in a sequence of any number, combination, or type of modality while providing granular real-time predictive feedback on any number or combination of predictive tasks. MultiModN's composable pipeline is interpretable-by-design, as well as innately multi-task and robust to the fundamental issue of biased missingness. We perform four experiments on several benchmark MM datasets across 10 real-world tasks (predicting medical diagnoses, academic performance, and weather), and show that MultiModN's sequential MM fusion does not compromise performance compared with a baseline of parallel fusion. By simulating the challenging bias of missing not-at-random (MNAR), this work shows that, contrary to MultiModN, parallel fusion baselines erroneously learn MNAR and suffer catastrophic failure when faced with different patterns of MNAR at inference. To the best of our knowledge, this is the first inherently MNAR-resistant approach to MM modeling. In conclusion, MultiModN provides granular insights, robustness, and flexibility without compromising performance.

GraPE: A Generate-Plan-Edit Framework for Compositional T2I Synthesis

Text-to-image (T2I) generation has seen significant progress with diffusion models, enabling generation of photo-realistic images from text prompts. Despite this progress, existing methods still face challenges in following complex text prompts, especially those requiring compositional and multi-step reasoning. Given such complex instructions, SOTA models often make mistakes in faithfully modeling object attributes, and relationships among them. In this work, we present an alternate paradigm for T2I synthesis, decomposing the task of complex multi-step generation into three steps, (a) Generate: we first generate an image using existing diffusion models (b) Plan: we make use of Multi-Modal LLMs (MLLMs) to identify the mistakes in the generated image expressed in terms of individual objects and their properties, and produce a sequence of corrective steps required in the form of an edit-plan. (c) Edit: we make use of an existing text-guided image editing models to sequentially execute our edit-plan over the generated image to get the desired image which is faithful to the original instruction. Our approach derives its strength from the fact that it is modular in nature, is training free, and can be applied over any combination of image generation and editing models. As an added contribution, we also develop a model capable of compositional editing, which further helps improve the overall accuracy of our proposed approach. Our method flexibly trades inference time compute with performance on compositional text prompts. We perform extensive experimental evaluation across 3 benchmarks and 10 T2I models including DALLE-3 and the latest -- SD-3.5-Large. Our approach not only improves the performance of the SOTA models, by upto 3 points, it also reduces the performance gap between weaker and stronger models. https://dair-iitd.github.io/GraPE/{https://dair-iitd.github.io/GraPE/}

Unified Reward Model for Multimodal Understanding and Generation

Recent advances in human preference alignment have significantly enhanced multimodal generation and understanding. A key approach is training reward models to guide preference optimization. However, existing models are often task-specific, limiting their adaptability across diverse visual applications. We also argue that jointly learning to assess multiple tasks may foster a synergistic effect, where improved image understanding enhances image generation assessment, and refined image evaluation benefits video assessment through better frame analysis. To this end, this paper proposes UnifiedReward, the first unified reward model for multimodal understanding and generation assessment, enabling both pairwise ranking and pointwise scoring, which can be employed for vision model preference alignment. Specifically, (1) we first develop UnifiedReward on our constructed large-scale human preference dataset, including both image and video generation/understanding tasks. (2) Then, it is utilized to automatically construct high-quality preference pair data based on the vision models, fine-gradually filtering their outputs through pair ranking and point sifting. (3) Finally, these data are used for their preference alignment through Direct Preference Optimization (DPO). Experimental results demonstrate that joint learning to assess diverse visual tasks can lead to substantial mutual benefits and we apply our pipeline to both image and video understanding/generation tasks, significantly improving the performance in each domain.

Text-Guided Generation and Editing of Compositional 3D Avatars

Our goal is to create a realistic 3D facial avatar with hair and accessories using only a text description. While this challenge has attracted significant recent interest, existing methods either lack realism, produce unrealistic shapes, or do not support editing, such as modifications to the hairstyle. We argue that existing methods are limited because they employ a monolithic modeling approach, using a single representation for the head, face, hair, and accessories. Our observation is that the hair and face, for example, have very different structural qualities that benefit from different representations. Building on this insight, we generate avatars with a compositional model, in which the head, face, and upper body are represented with traditional 3D meshes, and the hair, clothing, and accessories with neural radiance fields (NeRF). The model-based mesh representation provides a strong geometric prior for the face region, improving realism while enabling editing of the person's appearance. By using NeRFs to represent the remaining components, our method is able to model and synthesize parts with complex geometry and appearance, such as curly hair and fluffy scarves. Our novel system synthesizes these high-quality compositional avatars from text descriptions. The experimental results demonstrate that our method, Text-guided generation and Editing of Compositional Avatars (TECA), produces avatars that are more realistic than those of recent methods while being editable because of their compositional nature. For example, our TECA enables the seamless transfer of compositional features like hairstyles, scarves, and other accessories between avatars. This capability supports applications such as virtual try-on.

PartGen: Part-level 3D Generation and Reconstruction with Multi-View Diffusion Models

Text- or image-to-3D generators and 3D scanners can now produce 3D assets with high-quality shapes and textures. These assets typically consist of a single, fused representation, like an implicit neural field, a Gaussian mixture, or a mesh, without any useful structure. However, most applications and creative workflows require assets to be made of several meaningful parts that can be manipulated independently. To address this gap, we introduce PartGen, a novel approach that generates 3D objects composed of meaningful parts starting from text, an image, or an unstructured 3D object. First, given multiple views of a 3D object, generated or rendered, a multi-view diffusion model extracts a set of plausible and view-consistent part segmentations, dividing the object into parts. Then, a second multi-view diffusion model takes each part separately, fills in the occlusions, and uses those completed views for 3D reconstruction by feeding them to a 3D reconstruction network. This completion process considers the context of the entire object to ensure that the parts integrate cohesively. The generative completion model can make up for the information missing due to occlusions; in extreme cases, it can hallucinate entirely invisible parts based on the input 3D asset. We evaluate our method on generated and real 3D assets and show that it outperforms segmentation and part-extraction baselines by a large margin. We also showcase downstream applications such as 3D part editing.

ClassDiffusion: More Aligned Personalization Tuning with Explicit Class Guidance

Recent text-to-image customization works have been proven successful in generating images of given concepts by fine-tuning the diffusion models on a few examples. However, these methods tend to overfit the concepts, resulting in failure to create the concept under multiple conditions (e.g. headphone is missing when generating a <sks> dog wearing a headphone'). Interestingly, we notice that the base model before fine-tuning exhibits the capability to compose the base concept with other elements (e.g. a dog wearing a headphone) implying that the compositional ability only disappears after personalization tuning. Inspired by this observation, we present ClassDiffusion, a simple technique that leverages a semantic preservation loss to explicitly regulate the concept space when learning the new concept. Despite its simplicity, this helps avoid semantic drift when fine-tuning on the target concepts. Extensive qualitative and quantitative experiments demonstrate that the use of semantic preservation loss effectively improves the compositional abilities of the fine-tune models. In response to the ineffective evaluation of CLIP-T metrics, we introduce BLIP2-T metric, a more equitable and effective evaluation metric for this particular domain. We also provide in-depth empirical study and theoretical analysis to better understand the role of the proposed loss. Lastly, we also extend our ClassDiffusion to personalized video generation, demonstrating its flexibility.

OCTScenes: A Versatile Real-World Dataset of Tabletop Scenes for Object-Centric Learning

Humans possess the cognitive ability to comprehend scenes in a compositional manner. To empower AI systems with similar abilities, object-centric representation learning aims to acquire representations of individual objects from visual scenes without any supervision. Although recent advancements in object-centric representation learning have achieved remarkable progress on complex synthesis datasets, there is a huge challenge for application in complex real-world scenes. One of the essential reasons is the scarcity of real-world datasets specifically tailored to object-centric representation learning methods. To solve this problem, we propose a versatile real-world dataset of tabletop scenes for object-centric learning called OCTScenes, which is meticulously designed to serve as a benchmark for comparing, evaluating and analyzing object-centric representation learning methods. OCTScenes contains 5000 tabletop scenes with a total of 15 everyday objects. Each scene is captured in 60 frames covering a 360-degree perspective. Consequently, OCTScenes is a versatile benchmark dataset that can simultaneously satisfy the evaluation of object-centric representation learning methods across static scenes, dynamic scenes, and multi-view scenes tasks. Extensive experiments of object-centric representation learning methods for static, dynamic and multi-view scenes are conducted on OCTScenes. The results demonstrate the shortcomings of state-of-the-art methods for learning meaningful representations from real-world data, despite their impressive performance on complex synthesis datasets. Furthermore, OCTScenes can serves as a catalyst for advancing existing state-of-the-art methods, inspiring them to adapt to real-world scenes. Dataset and code are available at https://huggingface.co/datasets/Yinxuan/OCTScenes.

GPT4RoI: Instruction Tuning Large Language Model on Region-of-Interest

Instruction tuning large language model (LLM) on image-text pairs has achieved unprecedented vision-language multimodal abilities. However, their vision-language alignments are only built on image-level, the lack of region-level alignment limits their advancements to fine-grained multimodal understanding. In this paper, we propose instruction tuning on region-of-interest. The key design is to reformulate the bounding box as the format of spatial instruction. The interleaved sequences of visual features extracted by the spatial instruction and the language embedding are input to LLM, and trained on the transformed region-text data in instruction tuning format. Our region-level vision-language model, termed as GPT4RoI, brings brand new conversational and interactive experience beyond image-level understanding. (1) Controllability: Users can interact with our model by both language and spatial instructions to flexibly adjust the detail level of the question. (2) Capacities: Our model supports not only single-region spatial instruction but also multi-region. This unlocks more region-level multimodal capacities such as detailed region caption and complex region reasoning. (3) Composition: Any off-the-shelf object detector can be a spatial instruction provider so as to mine informative object attributes from our model, like color, shape, material, action, relation to other objects, etc. The code, data, and demo can be found at https://github.com/jshilong/GPT4RoI.

AGQA: A Benchmark for Compositional Spatio-Temporal Reasoning

Visual events are a composition of temporal actions involving actors spatially interacting with objects. When developing computer vision models that can reason about compositional spatio-temporal events, we need benchmarks that can analyze progress and uncover shortcomings. Existing video question answering benchmarks are useful, but they often conflate multiple sources of error into one accuracy metric and have strong biases that models can exploit, making it difficult to pinpoint model weaknesses. We present Action Genome Question Answering (AGQA), a new benchmark for compositional spatio-temporal reasoning. AGQA contains 192M unbalanced question answer pairs for 9.6K videos. We also provide a balanced subset of 3.9M question answer pairs, 3 orders of magnitude larger than existing benchmarks, that minimizes bias by balancing the answer distributions and types of question structures. Although human evaluators marked 86.02% of our question-answer pairs as correct, the best model achieves only 47.74% accuracy. In addition, AGQA introduces multiple training/test splits to test for various reasoning abilities, including generalization to novel compositions, to indirect references, and to more compositional steps. Using AGQA, we evaluate modern visual reasoning systems, demonstrating that the best models barely perform better than non-visual baselines exploiting linguistic biases and that none of the existing models generalize to novel compositions unseen during training.

Bongard-HOI: Benchmarking Few-Shot Visual Reasoning for Human-Object Interactions

A significant gap remains between today's visual pattern recognition models and human-level visual cognition especially when it comes to few-shot learning and compositional reasoning of novel concepts. We introduce Bongard-HOI, a new visual reasoning benchmark that focuses on compositional learning of human-object interactions (HOIs) from natural images. It is inspired by two desirable characteristics from the classical Bongard problems (BPs): 1) few-shot concept learning, and 2) context-dependent reasoning. We carefully curate the few-shot instances with hard negatives, where positive and negative images only disagree on action labels, making mere recognition of object categories insufficient to complete our benchmarks. We also design multiple test sets to systematically study the generalization of visual learning models, where we vary the overlap of the HOI concepts between the training and test sets of few-shot instances, from partial to no overlaps. Bongard-HOI presents a substantial challenge to today's visual recognition models. The state-of-the-art HOI detection model achieves only 62% accuracy on few-shot binary prediction while even amateur human testers on MTurk have 91% accuracy. With the Bongard-HOI benchmark, we hope to further advance research efforts in visual reasoning, especially in holistic perception-reasoning systems and better representation learning.

Attention Calibration for Disentangled Text-to-Image Personalization

Recent thrilling progress in large-scale text-to-image (T2I) models has unlocked unprecedented synthesis quality of AI-generated content (AIGC) including image generation, 3D and video composition. Further, personalized techniques enable appealing customized production of a novel concept given only several images as reference. However, an intriguing problem persists: Is it possible to capture multiple, novel concepts from one single reference image? In this paper, we identify that existing approaches fail to preserve visual consistency with the reference image and eliminate cross-influence from concepts. To alleviate this, we propose an attention calibration mechanism to improve the concept-level understanding of the T2I model. Specifically, we first introduce new learnable modifiers bound with classes to capture attributes of multiple concepts. Then, the classes are separated and strengthened following the activation of the cross-attention operation, ensuring comprehensive and self-contained concepts. Additionally, we suppress the attention activation of different classes to mitigate mutual influence among concepts. Together, our proposed method, dubbed DisenDiff, can learn disentangled multiple concepts from one single image and produce novel customized images with learned concepts. We demonstrate that our method outperforms the current state of the art in both qualitative and quantitative evaluations. More importantly, our proposed techniques are compatible with LoRA and inpainting pipelines, enabling more interactive experiences.

Inst3D-LMM: Instance-Aware 3D Scene Understanding with Multi-modal Instruction Tuning

Despite encouraging progress in 3D scene understanding, it remains challenging to develop an effective Large Multi-modal Model (LMM) that is capable of understanding and reasoning in complex 3D environments. Most previous methods typically encode 3D point and 2D image features separately, neglecting interactions between 2D semantics and 3D object properties, as well as the spatial relationships within the 3D environment. This limitation not only hinders comprehensive representations of 3D scene, but also compromises training and inference efficiency. To address these challenges, we propose a unified Instance-aware 3D Large Multi-modal Model (Inst3D-LMM) to deal with multiple 3D scene understanding tasks simultaneously. To obtain the fine-grained instance-level visual tokens, we first introduce a novel Multi-view Cross-Modal Fusion (MCMF) module to inject the multi-view 2D semantics into their corresponding 3D geometric features. For scene-level relation-aware tokens, we further present a 3D Instance Spatial Relation (3D-ISR) module to capture the intricate pairwise spatial relationships among objects. Additionally, we perform end-to-end multi-task instruction tuning simultaneously without the subsequent task-specific fine-tuning. Extensive experiments demonstrate that our approach outperforms the state-of-the-art methods across 3D scene understanding, reasoning and grounding tasks. Source code is available at https://github.com/hanxunyu/Inst3D-LMM

Multi-Concept T2I-Zero: Tweaking Only The Text Embeddings and Nothing Else

Recent advances in text-to-image diffusion models have enabled the photorealistic generation of images from text prompts. Despite the great progress, existing models still struggle to generate compositional multi-concept images naturally, limiting their ability to visualize human imagination. While several recent works have attempted to address this issue, they either introduce additional training or adopt guidance at inference time. In this work, we consider a more ambitious goal: natural multi-concept generation using a pre-trained diffusion model, and with almost no extra cost. To achieve this goal, we identify the limitations in the text embeddings used for the pre-trained text-to-image diffusion models. Specifically, we observe concept dominance and non-localized contribution that severely degrade multi-concept generation performance. We further design a minimal low-cost solution that overcomes the above issues by tweaking (not re-training) the text embeddings for more realistic multi-concept text-to-image generation. Our Correction by Similarities method tweaks the embedding of concepts by collecting semantic features from most similar tokens to localize the contribution. To avoid mixing features of concepts, we also apply Cross-Token Non-Maximum Suppression, which excludes the overlap of contributions from different concepts. Experiments show that our approach outperforms previous methods in text-to-image, image manipulation, and personalization tasks, despite not introducing additional training or inference costs to the diffusion steps.

V3Det Challenge 2024 on Vast Vocabulary and Open Vocabulary Object Detection: Methods and Results

Detecting objects in real-world scenes is a complex task due to various challenges, including the vast range of object categories, and potential encounters with previously unknown or unseen objects. The challenges necessitate the development of public benchmarks and challenges to advance the field of object detection. Inspired by the success of previous COCO and LVIS Challenges, we organize the V3Det Challenge 2024 in conjunction with the 4th Open World Vision Workshop: Visual Perception via Learning in an Open World (VPLOW) at CVPR 2024, Seattle, US. This challenge aims to push the boundaries of object detection research and encourage innovation in this field. The V3Det Challenge 2024 consists of two tracks: 1) Vast Vocabulary Object Detection: This track focuses on detecting objects from a large set of 13204 categories, testing the detection algorithm's ability to recognize and locate diverse objects. 2) Open Vocabulary Object Detection: This track goes a step further, requiring algorithms to detect objects from an open set of categories, including unknown objects. In the following sections, we will provide a comprehensive summary and analysis of the solutions submitted by participants. By analyzing the methods and solutions presented, we aim to inspire future research directions in vast vocabulary and open-vocabulary object detection, driving progress in this field. Challenge homepage: https://v3det.openxlab.org.cn/challenge

MIA-DPO: Multi-Image Augmented Direct Preference Optimization For Large Vision-Language Models

Visual preference alignment involves training Large Vision-Language Models (LVLMs) to predict human preferences between visual inputs. This is typically achieved by using labeled datasets of chosen/rejected pairs and employing optimization algorithms like direct preference optimization (DPO). Existing visual alignment methods, primarily designed for single-image scenarios, struggle to effectively handle the complexity of multi-image tasks due to the scarcity of diverse training data and the high cost of annotating chosen/rejected pairs. We present Multi-Image Augmented Direct Preference Optimization (MIA-DPO), a visual preference alignment approach that effectively handles multi-image inputs. MIA-DPO mitigates the scarcity of diverse multi-image training data by extending single-image data with unrelated images arranged in grid collages or pic-in-pic formats, significantly reducing the costs associated with multi-image data annotations. Our observation reveals that attention values of LVLMs vary considerably across different images. We use attention values to identify and filter out rejected responses the model may have mistakenly focused on. Our attention-aware selection for constructing the chosen/rejected pairs without relying on (i) human annotation, (ii) extra data, and (iii) external models or APIs. MIA-DPO is compatible with various architectures and outperforms existing methods on five multi-image benchmarks, achieving an average performance boost of 3.0% on LLaVA-v1.5 and 4.3% on the recent InternLM-XC2.5. Moreover, MIA-DPO has a minimal effect on the model's ability to understand single images.

Holistic Understanding of 3D Scenes as Universal Scene Description

3D scene understanding is a long-standing challenge in computer vision and a key component in enabling mixed reality, wearable computing, and embodied AI. Providing a solution to these applications requires a multifaceted approach that covers scene-centric, object-centric, as well as interaction-centric capabilities. While there exist numerous datasets approaching the former two problems, the task of understanding interactable and articulated objects is underrepresented and only partly covered by current works. In this work, we address this shortcoming and introduce (1) an expertly curated dataset in the Universal Scene Description (USD) format, featuring high-quality manual annotations, for instance, segmentation and articulation on 280 indoor scenes; (2) a learning-based model together with a novel baseline capable of predicting part segmentation along with a full specification of motion attributes, including motion type, articulated and interactable parts, and motion parameters; (3) a benchmark serving to compare upcoming methods for the task at hand. Overall, our dataset provides 8 types of annotations - object and part segmentations, motion types, movable and interactable parts, motion parameters, connectivity, and object mass annotations. With its broad and high-quality annotations, the data provides the basis for holistic 3D scene understanding models. All data is provided in the USD format, allowing interoperability and easy integration with downstream tasks. We provide open access to our dataset, benchmark, and method's source code.

Foundational Models Defining a New Era in Vision: A Survey and Outlook

Vision systems to see and reason about the compositional nature of visual scenes are fundamental to understanding our world. The complex relations between objects and their locations, ambiguities, and variations in the real-world environment can be better described in human language, naturally governed by grammatical rules and other modalities such as audio and depth. The models learned to bridge the gap between such modalities coupled with large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time. These models are referred to as foundational models. The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions. In this survey, we provide a comprehensive review of such emerging foundational models, including typical architecture designs to combine different modalities (vision, text, audio, etc), training objectives (contrastive, generative), pre-training datasets, fine-tuning mechanisms, and the common prompting patterns; textual, visual, and heterogeneous. We discuss the open challenges and research directions for foundational models in computer vision, including difficulties in their evaluations and benchmarking, gaps in their real-world understanding, limitations of their contextual understanding, biases, vulnerability to adversarial attacks, and interpretability issues. We review recent developments in this field, covering a wide range of applications of foundation models systematically and comprehensively. A comprehensive list of foundational models studied in this work is available at https://github.com/awaisrauf/Awesome-CV-Foundational-Models.

Chat-3D v2: Bridging 3D Scene and Large Language Models with Object Identifiers

Recent research has evidenced the significant potentials of Large Language Models (LLMs) in handling challenging tasks within 3D scenes. However, current models are constrained to addressing object-centric tasks, where each question-answer pair focuses solely on an individual object. In real-world applications, users may pose queries involving multiple objects or expect for answers that precisely reference various objects. We introduce the use of object identifiers to freely reference objects during a conversation. While this solution appears straightforward, it presents two main challenges: 1) How to establish a reliable one-to-one correspondence between each object and its identifier? 2) How to incorporate complex spatial relationships among dozens of objects into the embedding space of the LLM? To address these challenges, we propose a two-stage alignment method, which involves learning an attribute-aware token and a relation-aware token for each object. These tokens capture the object's attributes and spatial relationships with surrounding objects in the 3D scene. Once the alignment is established, we can fine-tune our model on various downstream tasks using instruction tuning. Experiments conducted on traditional datasets like ScanQA, ScanRefer, and Nr3D/Sr3D showcase the effectiveness of our proposed method. Additionally, we create a 3D scene captioning dataset annotated with rich object identifiers, with the assistant of GPT-4. This dataset aims to further explore the capability of object identifiers in effective object referencing and precise scene understanding.

A-STAR: Test-time Attention Segregation and Retention for Text-to-image Synthesis

While recent developments in text-to-image generative models have led to a suite of high-performing methods capable of producing creative imagery from free-form text, there are several limitations. By analyzing the cross-attention representations of these models, we notice two key issues. First, for text prompts that contain multiple concepts, there is a significant amount of pixel-space overlap (i.e., same spatial regions) among pairs of different concepts. This eventually leads to the model being unable to distinguish between the two concepts and one of them being ignored in the final generation. Next, while these models attempt to capture all such concepts during the beginning of denoising (e.g., first few steps) as evidenced by cross-attention maps, this knowledge is not retained by the end of denoising (e.g., last few steps). Such loss of knowledge eventually leads to inaccurate generation outputs. To address these issues, our key innovations include two test-time attention-based loss functions that substantially improve the performance of pretrained baseline text-to-image diffusion models. First, our attention segregation loss reduces the cross-attention overlap between attention maps of different concepts in the text prompt, thereby reducing the confusion/conflict among various concepts and the eventual capture of all concepts in the generated output. Next, our attention retention loss explicitly forces text-to-image diffusion models to retain cross-attention information for all concepts across all denoising time steps, thereby leading to reduced information loss and the preservation of all concepts in the generated output.

MUSES: 3D-Controllable Image Generation via Multi-Modal Agent Collaboration

Despite recent advancements in text-to-image generation, most existing methods struggle to create images with multiple objects and complex spatial relationships in 3D world. To tackle this limitation, we introduce a generic AI system, namely MUSES, for 3D-controllable image generation from user queries. Specifically, our MUSES addresses this challenging task by developing a progressive workflow with three key components, including (1) Layout Manager for 2D-to-3D layout lifting, (2) Model Engineer for 3D object acquisition and calibration, (3) Image Artist for 3D-to-2D image rendering. By mimicking the collaboration of human professionals, this multi-modal agent pipeline facilitates the effective and automatic creation of images with 3D-controllable objects, through an explainable integration of top-down planning and bottom-up generation. Additionally, we find that existing benchmarks lack detailed descriptions of complex 3D spatial relationships of multiple objects. To fill this gap, we further construct a new benchmark of T2I-3DisBench (3D image scene), which describes diverse 3D image scenes with 50 detailed prompts. Extensive experiments show the state-of-the-art performance of MUSES on both T2I-CompBench and T2I-3DisBench, outperforming recent strong competitors such as DALL-E 3 and Stable Diffusion 3. These results demonstrate a significant step of MUSES forward in bridging natural language, 2D image generation, and 3D world. Our codes and models will be released soon.

Compositional 3D-aware Video Generation with LLM Director

Significant progress has been made in text-to-video generation through the use of powerful generative models and large-scale internet data. However, substantial challenges remain in precisely controlling individual concepts within the generated video, such as the motion and appearance of specific characters and the movement of viewpoints. In this work, we propose a novel paradigm that generates each concept in 3D representation separately and then composes them with priors from Large Language Models (LLM) and 2D diffusion models. Specifically, given an input textual prompt, our scheme consists of three stages: 1) We leverage LLM as the director to first decompose the complex query into several sub-prompts that indicate individual concepts within the video~(e.g., scene, objects, motions), then we let LLM to invoke pre-trained expert models to obtain corresponding 3D representations of concepts. 2) To compose these representations, we prompt multi-modal LLM to produce coarse guidance on the scales and coordinates of trajectories for the objects. 3) To make the generated frames adhere to natural image distribution, we further leverage 2D diffusion priors and use Score Distillation Sampling to refine the composition. Extensive experiments demonstrate that our method can generate high-fidelity videos from text with diverse motion and flexible control over each concept. Project page: https://aka.ms/c3v.

VideoPhy: Evaluating Physical Commonsense for Video Generation

Recent advances in internet-scale video data pretraining have led to the development of text-to-video generative models that can create high-quality videos across a broad range of visual concepts, synthesize realistic motions and render complex objects. Hence, these generative models have the potential to become general-purpose simulators of the physical world. However, it is unclear how far we are from this goal with the existing text-to-video generative models. To this end, we present VideoPhy, a benchmark designed to assess whether the generated videos follow physical commonsense for real-world activities (e.g. marbles will roll down when placed on a slanted surface). Specifically, we curate diverse prompts that involve interactions between various material types in the physical world (e.g., solid-solid, solid-fluid, fluid-fluid). We then generate videos conditioned on these captions from diverse state-of-the-art text-to-video generative models, including open models (e.g., CogVideoX) and closed models (e.g., Lumiere, Dream Machine). Our human evaluation reveals that the existing models severely lack the ability to generate videos adhering to the given text prompts, while also lack physical commonsense. Specifically, the best performing model, CogVideoX-5B, generates videos that adhere to the caption and physical laws for 39.6% of the instances. VideoPhy thus highlights that the video generative models are far from accurately simulating the physical world. Finally, we propose an auto-evaluator, VideoCon-Physics, to assess the performance reliably for the newly released models.

CHORUS: Learning Canonicalized 3D Human-Object Spatial Relations from Unbounded Synthesized Images

We present a method for teaching machines to understand and model the underlying spatial common sense of diverse human-object interactions in 3D in a self-supervised way. This is a challenging task, as there exist specific manifolds of the interactions that can be considered human-like and natural, but the human pose and the geometry of objects can vary even for similar interactions. Such diversity makes the annotating task of 3D interactions difficult and hard to scale, which limits the potential to reason about that in a supervised way. One way of learning the 3D spatial relationship between humans and objects during interaction is by showing multiple 2D images captured from different viewpoints when humans interact with the same type of objects. The core idea of our method is to leverage a generative model that produces high-quality 2D images from an arbitrary text prompt input as an "unbounded" data generator with effective controllability and view diversity. Despite its imperfection of the image quality over real images, we demonstrate that the synthesized images are sufficient to learn the 3D human-object spatial relations. We present multiple strategies to leverage the synthesized images, including (1) the first method to leverage a generative image model for 3D human-object spatial relation learning; (2) a framework to reason about the 3D spatial relations from inconsistent 2D cues in a self-supervised manner via 3D occupancy reasoning with pose canonicalization; (3) semantic clustering to disambiguate different types of interactions with the same object types; and (4) a novel metric to assess the quality of 3D spatial learning of interaction.

TALE: Training-free Cross-domain Image Composition via Adaptive Latent Manipulation and Energy-guided Optimization

We present TALE, a novel training-free framework harnessing the generative capabilities of text-to-image diffusion models to address the cross-domain image composition task that focuses on flawlessly incorporating user-specified objects into a designated visual contexts regardless of domain disparity. Previous methods often involve either training auxiliary networks or finetuning diffusion models on customized datasets, which are expensive and may undermine the robust textual and visual priors of pre-trained diffusion models. Some recent works attempt to break the barrier by proposing training-free workarounds that rely on manipulating attention maps to tame the denoising process implicitly. However, composing via attention maps does not necessarily yield desired compositional outcomes. These approaches could only retain some semantic information and usually fall short in preserving identity characteristics of input objects or exhibit limited background-object style adaptation in generated images. In contrast, TALE is a novel method that operates directly on latent space to provide explicit and effective guidance for the composition process to resolve these problems. Specifically, we equip TALE with two mechanisms dubbed Adaptive Latent Manipulation and Energy-guided Latent Optimization. The former formulates noisy latents conducive to initiating and steering the composition process by directly leveraging background and foreground latents at corresponding timesteps, and the latter exploits designated energy functions to further optimize intermediate latents conforming to specific conditions that complement the former to generate desired final results. Our experiments demonstrate that TALE surpasses prior baselines and attains state-of-the-art performance in image-guided composition across various photorealistic and artistic domains.

Adaptive Multi-head Contrastive Learning

In contrastive learning, two views of an original image, generated by different augmentations, are considered a positive pair, and their similarity is required to be high. Similarly, two views of distinct images form a negative pair, with encouraged low similarity. Typically, a single similarity measure, provided by a lone projection head, evaluates positive and negative sample pairs. However, due to diverse augmentation strategies and varying intra-sample similarity, views from the same image may not always be similar. Additionally, owing to inter-sample similarity, views from different images may be more akin than those from the same image. Consequently, enforcing high similarity for positive pairs and low similarity for negative pairs may be unattainable, and in some cases, such enforcement could detrimentally impact performance. To address this challenge, we propose using multiple projection heads, each producing a distinct set of features. Our pre-training loss function emerges from a solution to the maximum likelihood estimation over head-wise posterior distributions of positive samples given observations. This loss incorporates the similarity measure over positive and negative pairs, each re-weighted by an individual adaptive temperature, regulated to prevent ill solutions. Our approach, Adaptive Multi-Head Contrastive Learning (AMCL), can be applied to and experimentally enhances several popular contrastive learning methods such as SimCLR, MoCo, and Barlow Twins. The improvement remains consistent across various backbones and linear probing epochs, and becomes more significant when employing multiple augmentation methods.

Segment Everything Everywhere All at Once

In this work, we present SEEM, a promptable and interactive model for segmenting everything everywhere all at once in an image, as shown in Fig.1. In SEEM, we propose a novel decoding mechanism that enables diverse prompting for all types of segmentation tasks, aiming at a universal segmentation interface that behaves like large language models (LLMs). More specifically, SEEM is designed with four desiderata: i) Versatility. We introduce a new visual prompt to unify different spatial queries including points, boxes, scribbles and masks, which can further generalize to a different referring image; ii) Compositionality. We learn a joint visual-semantic space between text and visual prompts, which facilitates the dynamic composition of two prompt types required for various segmentation tasks; iii) Interactivity. We further incorporate learnable memory prompts into the decoder to retain segmentation history through mask-guided cross-attention from decoder to image features; and iv) Semantic-awareness. We use a text encoder to encode text queries and mask labels into the same semantic space for open-vocabulary segmentation. We conduct a comprehensive empirical study to validate the effectiveness of SEEM across diverse segmentation tasks. Notably, our single SEEM model achieves competitive performance across interactive segmentation, generic segmentation, referring segmentation, and video object segmentation on 9 datasets with minimum 1/100 supervision. Furthermore, SEEM showcases a remarkable capacity for generalization to novel prompts or their combinations, rendering it a readily universal image segmentation interface.

Space-time tradeoffs of lenses and optics via higher category theory

Optics and lenses are abstract categorical gadgets that model systems with bidirectional data flow. In this paper we observe that the denotational definition of optics - identifying two optics as equivalent by observing their behaviour from the outside - is not suitable for operational, software oriented approaches where optics are not merely observed, but built with their internal setups in mind. We identify operational differences between denotationally isomorphic categories of cartesian optics and lenses: their different composition rule and corresponding space-time tradeoffs, positioning them at two opposite ends of a spectrum. With these motivations we lift the existing categorical constructions and their relationships to the 2-categorical level, showing that the relevant operational concerns become visible. We define the 2-category 2-Optic(C) whose 2-cells explicitly track optics' internal configuration. We show that the 1-category Optic(C) arises by locally quotienting out the connected components of this 2-category. We show that the embedding of lenses into cartesian optics gets weakened from a functor to an oplax functor whose oplaxator now detects the different composition rule. We determine the difficulties in showing this functor forms a part of an adjunction in any of the standard 2-categories. We establish a conjecture that the well-known isomorphism between cartesian lenses and optics arises out of the lax 2-adjunction between their double-categorical counterparts. In addition to presenting new research, this paper is also meant to be an accessible introduction to the topic.

CREMA: Multimodal Compositional Video Reasoning via Efficient Modular Adaptation and Fusion

Despite impressive advancements in multimodal compositional reasoning approaches, they are still limited in their flexibility and efficiency by processing fixed modality inputs while updating a lot of model parameters. This paper tackles these critical challenges and proposes CREMA, an efficient and modular modality-fusion framework for injecting any new modality into video reasoning. We first augment multiple informative modalities (such as optical flow, 3D point cloud, audio) from given videos without extra human annotation by leveraging existing pre-trained models. Next, we introduce a query transformer with multiple parameter-efficient modules associated with each accessible modality. It projects diverse modality features to the LLM token embedding space, allowing the model to integrate different data types for response generation. Furthermore, we propose a fusion module designed to compress multimodal queries, maintaining computational efficiency in the LLM while combining additional modalities. We validate our method on video-3D, video-audio, and video-language reasoning tasks and achieve better/equivalent performance against strong multimodal LLMs, including BLIP-2, 3D-LLM, and SeViLA while using 96% fewer trainable parameters. We provide extensive analyses of CREMA, including the impact of each modality on reasoning domains, the design of the fusion module, and example visualizations.

UniRef++: Segment Every Reference Object in Spatial and Temporal Spaces

The reference-based object segmentation tasks, namely referring image segmentation (RIS), few-shot image segmentation (FSS), referring video object segmentation (RVOS), and video object segmentation (VOS), aim to segment a specific object by utilizing either language or annotated masks as references. Despite significant progress in each respective field, current methods are task-specifically designed and developed in different directions, which hinders the activation of multi-task capabilities for these tasks. In this work, we end the current fragmented situation and propose UniRef++ to unify the four reference-based object segmentation tasks with a single architecture. At the heart of our approach is the proposed UniFusion module which performs multiway-fusion for handling different tasks with respect to their specified references. And a unified Transformer architecture is then adopted for achieving instance-level segmentation. With the unified designs, UniRef++ can be jointly trained on a broad range of benchmarks and can flexibly complete multiple tasks at run-time by specifying the corresponding references. We evaluate our unified models on various benchmarks. Extensive experimental results indicate that our proposed UniRef++ achieves state-of-the-art performance on RIS and RVOS, and performs competitively on FSS and VOS with a parameter-shared network. Moreover, we showcase that the proposed UniFusion module could be easily incorporated into the current advanced foundation model SAM and obtain satisfactory results with parameter-efficient finetuning. Codes and models are available at https://github.com/FoundationVision/UniRef.

ExoViP: Step-by-step Verification and Exploration with Exoskeleton Modules for Compositional Visual Reasoning

Compositional visual reasoning methods, which translate a complex query into a structured composition of feasible visual tasks, have exhibited a strong potential in complicated multi-modal tasks. Empowered by recent advances in large language models (LLMs), this multi-modal challenge has been brought to a new stage by treating LLMs as few-shot/zero-shot planners, i.e., vision-language (VL) programming. Such methods, despite their numerous merits, suffer from challenges due to LLM planning mistakes or inaccuracy of visual execution modules, lagging behind the non-compositional models. In this work, we devise a "plug-and-play" method, ExoViP, to correct errors in both the planning and execution stages through introspective verification. We employ verification modules as "exoskeletons" to enhance current VL programming schemes. Specifically, our proposed verification module utilizes a mixture of three sub-verifiers to validate predictions after each reasoning step, subsequently calibrating the visual module predictions and refining the reasoning trace planned by LLMs. Experimental results on two representative VL programming methods showcase consistent improvements on five compositional reasoning tasks on standard benchmarks. In light of this, we believe that ExoViP can foster better performance and generalization on open-domain multi-modal challenges.