Papers
arxiv:2304.09660

MPMQA: Multimodal Question Answering on Product Manuals

Published on Apr 19, 2023
Authors:
,
,
,
,

Abstract

Visual contents, such as illustrations and images, play a big role in product manual understanding. Existing Product Manual Question Answering (PMQA) datasets tend to ignore visual contents and only retain textual parts. In this work, to emphasize the importance of multimodal contents, we propose a Multimodal Product Manual Question Answering (MPMQA) task. For each question, MPMQA requires the model not only to process multimodal contents but also to provide multimodal answers. To support MPMQA, a large-scale dataset PM209 is constructed with human annotations, which contains 209 product manuals from 27 well-known consumer electronic brands. Human annotations include 6 types of semantic regions for manual contents and 22,021 pairs of question and answer. Especially, each answer consists of a textual sentence and related visual regions from manuals. Taking into account the length of product manuals and the fact that a question is always related to a small number of pages, MPMQA can be naturally split into two subtasks: retrieving most related pages and then generating <PRE_TAG>multimodal answers</POST_TAG>. We further propose a unified model that can perform these two subtasks all together and achieve comparable performance with multiple task-specific models. The PM209 dataset is available at https://github.com/AIM3-RUC/MPMQA.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2304.09660 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2304.09660 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2304.09660 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.