Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeVFlowOpt: A Token Pruning Framework for LMMs with Visual Information Flow-Guided Optimization
Large Multimodal Models (LMMs) excel in visual-language tasks by leveraging numerous visual tokens for fine-grained visual information, but this token redundancy results in significant computational costs. Previous research aimed at reducing visual tokens during inference typically leverages importance maps derived from attention scores among vision-only tokens or vision-language tokens to prune tokens across one or multiple pruning stages. Despite this progress, pruning frameworks and strategies remain simplistic and insufficiently explored, often resulting in substantial performance degradation. In this paper, we propose VFlowOpt, a token pruning framework that introduces an importance map derivation process and a progressive pruning module with a recycling mechanism. The hyperparameters of its pruning strategy are further optimized by a visual information flow-guided method. Specifically, we compute an importance map for image tokens based on their attention-derived context relevance and patch-level information entropy. We then decide which tokens to retain or prune and aggregate the pruned ones as recycled tokens to avoid potential information loss. Finally, we apply a visual information flow-guided method that regards the last token in the LMM as the most representative signal of text-visual interactions. This method minimizes the discrepancy between token representations in LMMs with and without pruning, thereby enabling superior pruning strategies tailored to different LMMs. Experiments demonstrate that VFlowOpt can prune 90% of visual tokens while maintaining comparable performance, leading to an 89% reduction in KV-Cache memory and 3.8 times faster inference.
Extending LLMs' Context Window with 100 Samples
Large Language Models (LLMs) are known to have limited extrapolation ability beyond their pre-trained context window, constraining their application in downstream tasks with lengthy inputs. Recent studies have sought to extend LLMs' context window by modifying rotary position embedding (RoPE), a popular position encoding method adopted by well-known LLMs such as LLaMA, PaLM, and GPT-NeoX. However, prior works like Position Interpolation (PI) and YaRN are resource-intensive and lack comparative experiments to assess their applicability. In this work, we identify the inherent need for LLMs' attention entropy (i.e. the information entropy of attention scores) to maintain stability and introduce a novel extension to RoPE which combines adjusting RoPE's base frequency and scaling the attention logits to help LLMs efficiently adapt to a larger context window. We validate the superiority of our method in both fine-tuning performance and robustness across different context window sizes on various context-demanding tasks. Notably, our method extends the context window of LLaMA-2-7B-Chat to 16,384 with only 100 samples and 6 training steps, showcasing extraordinary efficiency. Finally, we also explore how data compositions and training curricula affect context window extension for specific downstream tasks, suggesting fine-tuning LLMs with lengthy conversations as a good starting point. We release our code and SFT data at https://github.com/GAIR-NLP/Entropy-ABF.
LLMLingua-2: Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression
This paper focuses on task-agnostic prompt compression for better generalizability and efficiency. Considering the redundancy in natural language, existing approaches compress prompts by removing tokens or lexical units according to their information entropy obtained from a causal language model such as LLaMa-7B. The challenge is that information entropy may be a suboptimal compression metric: (i) it only leverages unidirectional context and may fail to capture all essential information needed for prompt compression; (ii) it is not aligned with the prompt compression objective. To address these issues, we propose a data distillation procedure to derive knowledge from an LLM to compress prompts without losing crucial information, and meantime, introduce an extractive text compression dataset. We formulate prompt compression as a token classification problem to guarantee the faithfulness of the compressed prompt to the original one, and use a Transformer encoder as the base architecture to capture all essential information for prompt compression from the full bidirectional context. Our approach leads to lower latency by explicitly learning the compression objective with smaller models such as XLM-RoBERTa-large and mBERT. We evaluate our method on both in-domain and out-of-domain datasets, including MeetingBank, LongBench, ZeroScrolls, GSM8K, and BBH. Despite its small size, our model shows significant performance gains over strong baselines and demonstrates robust generalization ability across different LLMs. Additionally, our model is 3x-6x faster than existing prompt compression methods, while accelerating the end-to-end latency by 1.6x-2.9x with compression ratios of 2x-5x.
TransFace: Calibrating Transformer Training for Face Recognition from a Data-Centric Perspective
Vision Transformers (ViTs) have demonstrated powerful representation ability in various visual tasks thanks to their intrinsic data-hungry nature. However, we unexpectedly find that ViTs perform vulnerably when applied to face recognition (FR) scenarios with extremely large datasets. We investigate the reasons for this phenomenon and discover that the existing data augmentation approach and hard sample mining strategy are incompatible with ViTs-based FR backbone due to the lack of tailored consideration on preserving face structural information and leveraging each local token information. To remedy these problems, this paper proposes a superior FR model called TransFace, which employs a patch-level data augmentation strategy named DPAP and a hard sample mining strategy named EHSM. Specially, DPAP randomly perturbs the amplitude information of dominant patches to expand sample diversity, which effectively alleviates the overfitting problem in ViTs. EHSM utilizes the information entropy in the local tokens to dynamically adjust the importance weight of easy and hard samples during training, leading to a more stable prediction. Experiments on several benchmarks demonstrate the superiority of our TransFace. Code and models are available at https://github.com/DanJun6737/TransFace.
LPO: Towards Accurate GUI Agent Interaction via Location Preference Optimization
The advent of autonomous agents is transforming interactions with Graphical User Interfaces (GUIs) by employing natural language as a powerful intermediary. Despite the predominance of Supervised Fine-Tuning (SFT) methods in current GUI agents for achieving spatial localization, these methods face substantial challenges due to their limited capacity to accurately perceive positional data. Existing strategies, such as reinforcement learning, often fail to assess positional accuracy effectively, thereby restricting their utility. In response, we introduce Location Preference Optimization (LPO), a novel approach that leverages locational data to optimize interaction preferences. LPO uses information entropy to predict interaction positions by focusing on zones rich in information. Besides, it further introduces a dynamic location reward function based on physical distance, reflecting the varying importance of interaction positions. Supported by Group Relative Preference Optimization (GRPO), LPO facilitates an extensive exploration of GUI environments and significantly enhances interaction precision. Comprehensive experiments demonstrate LPO's superior performance, achieving SOTA results across both offline benchmarks and real-world online evaluations. Our code will be made publicly available soon, at https://github.com/AIDC-AI/LPO.
A Method on Searching Better Activation Functions
The success of artificial neural networks (ANNs) hinges greatly on the judicious selection of an activation function, introducing non-linearity into network and enabling them to model sophisticated relationships in data. However, the search of activation functions has largely relied on empirical knowledge in the past, lacking theoretical guidance, which has hindered the identification of more effective activation functions. In this work, we offer a proper solution to such issue. Firstly, we theoretically demonstrate the existence of the worst activation function with boundary conditions (WAFBC) from the perspective of information entropy. Furthermore, inspired by the Taylor expansion form of information entropy functional, we propose the Entropy-based Activation Function Optimization (EAFO) methodology. EAFO methodology presents a novel perspective for designing static activation functions in deep neural networks and the potential of dynamically optimizing activation during iterative training. Utilizing EAFO methodology, we derive a novel activation function from ReLU, known as Correction Regularized ReLU (CRReLU). Experiments conducted with vision transformer and its variants on CIFAR-10, CIFAR-100 and ImageNet-1K datasets demonstrate the superiority of CRReLU over existing corrections of ReLU. Extensive empirical studies on task of large language model (LLM) fine-tuning, CRReLU exhibits superior performance compared to GELU, suggesting its broader potential for practical applications.
Quantized Spike-driven Transformer
Spiking neural networks are emerging as a promising energy-efficient alternative to traditional artificial neural networks due to their spike-driven paradigm. However, recent research in the SNN domain has mainly focused on enhancing accuracy by designing large-scale Transformer structures, which typically rely on substantial computational resources, limiting their deployment on resource-constrained devices. To overcome this challenge, we propose a quantized spike-driven Transformer baseline (QSD-Transformer), which achieves reduced resource demands by utilizing a low bit-width parameter. Regrettably, the QSD-Transformer often suffers from severe performance degradation. In this paper, we first conduct empirical analysis and find that the bimodal distribution of quantized spike-driven self-attention (Q-SDSA) leads to spike information distortion (SID) during quantization, causing significant performance degradation. To mitigate this issue, we take inspiration from mutual information entropy and propose a bi-level optimization strategy to rectify the information distribution in Q-SDSA. Specifically, at the lower level, we introduce an information-enhanced LIF to rectify the information distribution in Q-SDSA. At the upper level, we propose a fine-grained distillation scheme for the QSD-Transformer to align the distribution in Q-SDSA with that in the counterpart ANN. By integrating the bi-level optimization strategy, the QSD-Transformer can attain enhanced energy efficiency without sacrificing its high-performance advantage.For instance, when compared to the prior SNN benchmark on ImageNet, the QSD-Transformer achieves 80.3% top-1 accuracy, accompanied by significant reductions of 6.0times and 8.1times in power consumption and model size, respectively. Code is available at https://github.com/bollossom/QSD-Transformer.
Parsing is All You Need for Accurate Gait Recognition in the Wild
Binary silhouettes and keypoint-based skeletons have dominated human gait recognition studies for decades since they are easy to extract from video frames. Despite their success in gait recognition for in-the-lab environments, they usually fail in real-world scenarios due to their low information entropy for gait representations. To achieve accurate gait recognition in the wild, this paper presents a novel gait representation, named Gait Parsing Sequence (GPS). GPSs are sequences of fine-grained human segmentation, i.e., human parsing, extracted from video frames, so they have much higher information entropy to encode the shapes and dynamics of fine-grained human parts during walking. Moreover, to effectively explore the capability of the GPS representation, we propose a novel human parsing-based gait recognition framework, named ParsingGait. ParsingGait contains a Convolutional Neural Network (CNN)-based backbone and two light-weighted heads. The first head extracts global semantic features from GPSs, while the other one learns mutual information of part-level features through Graph Convolutional Networks to model the detailed dynamics of human walking. Furthermore, due to the lack of suitable datasets, we build the first parsing-based dataset for gait recognition in the wild, named Gait3D-Parsing, by extending the large-scale and challenging Gait3D dataset. Based on Gait3D-Parsing, we comprehensively evaluate our method and existing gait recognition methods. The experimental results show a significant improvement in accuracy brought by the GPS representation and the superiority of ParsingGait. The code and dataset are available at https://gait3d.github.io/gait3d-parsing-hp .
Mitigating the Accuracy-Robustness Trade-off via Multi-Teacher Adversarial Distillation
Adversarial training is a practical approach for improving the robustness of deep neural networks against adversarial attacks. Although bringing reliable robustness, the performance toward clean examples is negatively affected after adversarial training, which means a trade-off exists between accuracy and robustness. Recently, some studies have tried to use knowledge distillation methods in adversarial training, achieving competitive performance in improving the robustness but the accuracy for clean samples is still limited. In this paper, to mitigate the accuracy-robustness trade-off, we introduce the Multi-Teacher Adversarial Robustness Distillation (MTARD) to guide the model's adversarial training process by applying a strong clean teacher and a strong robust teacher to handle the clean examples and adversarial examples, respectively. During the optimization process, to ensure that different teachers show similar knowledge scales, we design the Entropy-Based Balance algorithm to adjust the teacher's temperature and keep the teachers' information entropy consistent. Besides, to ensure that the student has a relatively consistent learning speed from multiple teachers, we propose the Normalization Loss Balance algorithm to adjust the learning weights of different types of knowledge. A series of experiments conducted on public datasets demonstrate that MTARD outperforms the state-of-the-art adversarial training and distillation methods against various adversarial attacks.
Quantifying the Knowledge in GNNs for Reliable Distillation into MLPs
To bridge the gaps between topology-aware Graph Neural Networks (GNNs) and inference-efficient Multi-Layer Perceptron (MLPs), GLNN proposes to distill knowledge from a well-trained teacher GNN into a student MLP. Despite their great progress, comparatively little work has been done to explore the reliability of different knowledge points (nodes) in GNNs, especially their roles played during distillation. In this paper, we first quantify the knowledge reliability in GNN by measuring the invariance of their information entropy to noise perturbations, from which we observe that different knowledge points (1) show different distillation speeds (temporally); (2) are differentially distributed in the graph (spatially). To achieve reliable distillation, we propose an effective approach, namely Knowledge-inspired Reliable Distillation (KRD), that models the probability of each node being an informative and reliable knowledge point, based on which we sample a set of additional reliable knowledge points as supervision for training student MLPs. Extensive experiments show that KRD improves over the vanilla MLPs by 12.62% and outperforms its corresponding teacher GNNs by 2.16% averaged over 7 datasets and 3 GNN architectures.
REINA: Regularized Entropy Information-Based Loss for Efficient Simultaneous Speech Translation
Simultaneous Speech Translation (SimulST) systems stream in audio while simultaneously emitting translated text or speech. Such systems face the significant challenge of balancing translation quality and latency. We introduce a strategy to optimize this tradeoff: wait for more input only if you gain information by doing so. Based on this strategy, we present Regularized Entropy INformation Adaptation (REINA), a novel loss to train an adaptive policy using an existing non-streaming translation model. We derive REINA from information theory principles and show that REINA helps push the reported Pareto frontier of the latency/quality tradeoff over prior works. Utilizing REINA, we train a SimulST model on French, Spanish and German, both from and into English. Training on only open source or synthetically generated data, we achieve state-of-the-art (SOTA) streaming results for models of comparable size. We also introduce a metric for streaming efficiency, quantitatively showing REINA improves the latency/quality trade-off by as much as 21% compared to prior approaches, normalized against non-streaming baseline BLEU scores.
Fundamental Principle of Information-to-Energy Conversion
The equivalence of 1 bit of information to entropy was given by Landauer in 1961 as kln2, k the Boltzmann constant. Erasing information implies heat dissipation and the energy of 1 bit would then be (the Landauers limit) kT ln 2, T being the ambient temperature. From a quantum-cosmological point of view the minimum quantum of energy in the universe corresponds today to a temperature of 10^(-29) degrees K, probably forming a cosmic background of a Bose condensate [1]. Then, the bit with minimum energy today in the Universe is a quantum of energy 10^(-45)ergs, with an equivalent mass of 10^(-66)g. Low temperature implies low energy per bit and, of course, this is the way for faster and less energy dissipating computing devices. Our conjecture is this: the possibility of a future access to the CBBC (a coupling/channeling?) would mean a huge jump in the performance of these devices.
SECodec: Structural Entropy-based Compressive Speech Representation Codec for Speech Language Models
With the rapid advancement of large language models (LLMs), discrete speech representations have become crucial for integrating speech into LLMs. Existing methods for speech representation discretization rely on a predefined codebook size and Euclidean distance-based quantization. However, 1) the size of codebook is a critical parameter that affects both codec performance and downstream task training efficiency. 2) The Euclidean distance-based quantization may lead to audio distortion when the size of the codebook is controlled within a reasonable range. In fact, in the field of information compression, structural information and entropy guidance are crucial, but previous methods have largely overlooked these factors. Therefore, we address the above issues from an information-theoretic perspective, we present SECodec, a novel speech representation codec based on structural entropy (SE) for building speech language models. Specifically, we first model speech as a graph, clustering the speech features nodes within the graph and extracting the corresponding codebook by hierarchically and disentangledly minimizing 2D SE. Then, to address the issue of audio distortion, we propose a new quantization method. This method still adheres to the 2D SE minimization principle, adaptively selecting the most suitable token corresponding to the cluster for each incoming original speech node. Furthermore, we develop a Structural Entropy-based Speech Language Model (SESLM) that leverages SECodec. Experimental results demonstrate that SECodec performs comparably to EnCodec in speech reconstruction, and SESLM surpasses VALL-E in zero-shot text-to-speech tasks. Code, demo speeches, speech feature graph, SE codebook, and models are available at https://github.com/wlq2019/SECodec.
Differential Information: An Information-Theoretic Perspective on Preference Optimization
Direct Preference Optimization (DPO) has become a standard technique for aligning language models with human preferences in a supervised manner. Despite its empirical success, the theoretical justification behind its log-ratio reward parameterization remains incomplete. In this work, we address this gap by utilizing the Differential Information Distribution (DID): a distribution over token sequences that captures the information gained during policy updates. First, we show that when preference labels encode the differential information required to transform a reference policy into a target policy, the log-ratio reward in DPO emerges as the uniquely optimal form for learning the target policy via preference optimization. This result naturally yields a closed-form expression for the optimal sampling distribution over rejected responses. Second, we find that the condition for preferences to encode differential information is fundamentally linked to an implicit assumption regarding log-margin ordered policies-an inductive bias widely used in preference optimization yet previously unrecognized. Finally, by analyzing the entropy of the DID, we characterize how learning low-entropy differential information reinforces the policy distribution, while high-entropy differential information induces a smoothing effect, which explains the log-likelihood displacement phenomenon. We validate our theoretical findings in synthetic experiments and extend them to real-world instruction-following datasets. Our results suggest that learning high-entropy differential information is crucial for general instruction-following, while learning low-entropy differential information benefits knowledge-intensive question answering. Overall, our work presents a unifying perspective on the DPO objective, the structure of preference data, and resulting policy behaviors through the lens of differential information.
Minimum Entropy Coupling with Bottleneck
This paper investigates a novel lossy compression framework operating under logarithmic loss, designed to handle situations where the reconstruction distribution diverges from the source distribution. This framework is especially relevant for applications that require joint compression and retrieval, and in scenarios involving distributional shifts due to processing. We show that the proposed formulation extends the classical minimum entropy coupling framework by integrating a bottleneck, allowing for a controlled degree of stochasticity in the coupling. We explore the decomposition of the Minimum Entropy Coupling with Bottleneck (MEC-B) into two distinct optimization problems: Entropy-Bounded Information Maximization (EBIM) for the encoder, and Minimum Entropy Coupling (MEC) for the decoder. Through extensive analysis, we provide a greedy algorithm for EBIM with guaranteed performance, and characterize the optimal solution near functional mappings, yielding significant theoretical insights into the structural complexity of this problem. Furthermore, we illustrate the practical application of MEC-B through experiments in Markov Coding Games (MCGs) under rate limits. These games simulate a communication scenario within a Markov Decision Process, where an agent must transmit a compressed message from a sender to a receiver through its actions. Our experiments highlight the trade-offs between MDP rewards and receiver accuracy across various compression rates, showcasing the efficacy of our method compared to conventional compression baseline.
Combating Mode Collapse in GANs via Manifold Entropy Estimation
Generative Adversarial Networks (GANs) have shown compelling results in various tasks and applications in recent years. However, mode collapse remains a critical problem in GANs. In this paper, we propose a novel training pipeline to address the mode collapse issue of GANs. Different from existing methods, we propose to generalize the discriminator as feature embedding and maximize the entropy of distributions in the embedding space learned by the discriminator. Specifically, two regularization terms, i.e., Deep Local Linear Embedding (DLLE) and Deep Isometric feature Mapping (DIsoMap), are designed to encourage the discriminator to learn the structural information embedded in the data, such that the embedding space learned by the discriminator can be well-formed. Based on the well-learned embedding space supported by the discriminator, a non-parametric entropy estimator is designed to efficiently maximize the entropy of embedding vectors, playing as an approximation of maximizing the entropy of the generated distribution. By improving the discriminator and maximizing the distance of the most similar samples in the embedding space, our pipeline effectively reduces the mode collapse without sacrificing the quality of generated samples. Extensive experimental results show the effectiveness of our method, which outperforms the GAN baseline, MaF-GAN on CelebA (9.13 vs. 12.43 in FID) and surpasses the recent state-of-the-art energy-based model on the ANIME-FACE dataset (2.80 vs. 2.26 in Inception score). The code is available at https://github.com/HaozheLiu-ST/MEE
Negative Entropy and Black Hole Information
Based on negative entropy in entanglement, it is shown that a single-system Copenhagen measurement protocol is equivalent to the two-system von Neumann scheme with the memory filling up the system with negative information similar to the Dirac sea of negative energy. After equating the two quantum measurement protocols, we then apply this equivalence to the black hole radiation. That is, the black hole evaporation corresponds to the quantum measurement process and the two evaporation approaches, the observable-based single-system and the two-system entanglement-based protocols, can be made equivalent using quantum memory. In particular, the measurement choice, \theta, with the memory state inside the horizon in the entanglement-based scheme is shown to correspond to the observable of the measurement choice, \theta, outside the horizon in the single-system protocol, that is, O_{\theta}^{out} = Q_{\theta}^{in}. This indicates that the black hole as quantum memory is filling up with negative information outside the horizon, and its entropy corresponds to the logarithm of a number of equally probable measurement choices. This shows that the black hole radiation is no different than ordinary quantum theory.
Entropy-Guided Attention for Private LLMs
The pervasiveness of proprietary language models has raised critical privacy concerns, necessitating advancements in private inference (PI), where computations are performed directly on encrypted data without revealing users' sensitive information. While PI offers a promising solution, its practical deployment is hindered by substantial communication and latency overheads, primarily stemming from nonlinear operations. To address this, we introduce an information-theoretic framework to characterize the role of nonlinearities in decoder-only language models, laying a principled foundation for optimizing transformer-architectures tailored to the demands of PI. By leveraging Shannon's entropy as a quantitative measure, we uncover the previously unexplored dual significance of nonlinearities: beyond ensuring training stability, they are crucial for maintaining attention head diversity. Specifically, we find that their removal triggers two critical failure modes: {\em entropy collapse} in deeper layers that destabilizes training, and {\em entropic overload} in earlier layers that leads to under-utilization of Multi-Head Attention's (MHA) representational capacity. We propose an entropy-guided attention mechanism paired with a novel entropy regularization technique to mitigate entropic overload. Additionally, we explore PI-friendly alternatives to layer normalization for preventing entropy collapse and stabilizing the training of LLMs with reduced-nonlinearities. Our study bridges the gap between information theory and architectural design, establishing entropy dynamics as a principled guide for developing efficient PI architectures. The code and implementation are available at https://github.com/Nandan91/entropy-guided-attention-llm{entropy-guided-llm}.
Information-theoretic subset selection of multivariate Markov chains via submodular optimization
We study the problem of optimally projecting the transition matrix of a finite ergodic multivariate Markov chain onto a lower-dimensional state space. Specifically, we seek to construct a projected Markov chain that optimizes various information-theoretic criteria under cardinality constraints. These criteria include entropy rate, information-theoretic distance to factorizability, independence, and stationarity. We formulate these tasks as best subset selection problems over multivariate Markov chains and leverage the submodular (or supermodular) structure of the objective functions to develop efficient greedy-based algorithms with theoretical guarantees. We extend our analysis to k-submodular settings and introduce a generalized version of the distorted greedy algorithm, which may be of independent interest. Finally, we illustrate the theory and algorithms through extensive numerical experiments with publicly available code on multivariate Markov chains associated with the Bernoulli-Laplace and Curie-Weiss model.
Revisiting Entropy Rate Constancy in Text
The uniform information density (UID) hypothesis states that humans tend to distribute information roughly evenly across an utterance or discourse. Early evidence in support of the UID hypothesis came from Genzel & Charniak (2002), which proposed an entropy rate constancy principle based on the probability of English text under n-gram language models. We re-evaluate the claims of Genzel & Charniak (2002) with neural language models, failing to find clear evidence in support of entropy rate constancy. We conduct a range of experiments across datasets, model sizes, and languages and discuss implications for the uniform information density hypothesis and linguistic theories of efficient communication more broadly.
TREET: TRansfer Entropy Estimation via Transformers
Transfer entropy (TE) is an information theoretic measure that reveals the directional flow of information between processes, providing valuable insights for a wide range of real-world applications. This work proposes Transfer Entropy Estimation via Transformers (TREET), a novel attention-based approach for estimating TE for stationary processes. The proposed approach employs Donsker-Varadhan representation to TE and leverages the attention mechanism for the task of neural estimation. We propose a detailed theoretical and empirical study of the TREET, comparing it to existing methods on a dedicated estimation benchmark. To increase its applicability, we design an estimated TE optimization scheme that is motivated by the functional representation lemma, and use it to estimate the capacity of communication channels with memory, which is a canonical optimization problem in information theory. We further demonstrate how an optimized TREET can be used to estimate underlying densities, providing experimental results. Finally, we apply TREET to feature analysis of patients with Apnea, demonstrating its applicability to real-world physiological data. Our work, applied with state-of-the-art deep learning methods, opens a new door for communication problems which are yet to be solved.
Assessing Neural Network Representations During Training Using Noise-Resilient Diffusion Spectral Entropy
Entropy and mutual information in neural networks provide rich information on the learning process, but they have proven difficult to compute reliably in high dimensions. Indeed, in noisy and high-dimensional data, traditional estimates in ambient dimensions approach a fixed entropy and are prohibitively hard to compute. To address these issues, we leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures. Specifically, we define diffusion spectral entropy (DSE) in neural representations of a dataset as well as diffusion spectral mutual information (DSMI) between different variables representing data. First, we show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data that outperform classic Shannon entropy, nonparametric estimation, and mutual information neural estimation (MINE). We then study the evolution of representations in classification networks with supervised learning, self-supervision, or overfitting. We observe that (1) DSE of neural representations increases during training; (2) DSMI with the class label increases during generalizable learning but stays stagnant during overfitting; (3) DSMI with the input signal shows differing trends: on MNIST it increases, while on CIFAR-10 and STL-10 it decreases. Finally, we show that DSE can be used to guide better network initialization and that DSMI can be used to predict downstream classification accuracy across 962 models on ImageNet. The official implementation is available at https://github.com/ChenLiu-1996/DiffusionSpectralEntropy.
Entropy-driven Unsupervised Keypoint Representation Learning in Videos
Extracting informative representations from videos is fundamental for effectively learning various downstream tasks. We present a novel approach for unsupervised learning of meaningful representations from videos, leveraging the concept of image spatial entropy (ISE) that quantifies the per-pixel information in an image. We argue that local entropy of pixel neighborhoods and their temporal evolution create valuable intrinsic supervisory signals for learning prominent features. Building on this idea, we abstract visual features into a concise representation of keypoints that act as dynamic information transmitters, and design a deep learning model that learns, purely unsupervised, spatially and temporally consistent representations directly from video frames. Two original information-theoretic losses, computed from local entropy, guide our model to discover consistent keypoint representations; a loss that maximizes the spatial information covered by the keypoints and a loss that optimizes the keypoints' information transportation over time. We compare our keypoint representation to strong baselines for various downstream tasks, \eg, learning object dynamics. Our empirical results show superior performance for our information-driven keypoints that resolve challenges like attendance to static and dynamic objects or objects abruptly entering and leaving the scene.
Information structures and their cohomology
We introduce the category of information structures, whose objects are suitable diagrams of measurable sets that encode the possible outputs of a given family of observables and their mutual relationships of refinement; they serve as mathematical models of contextuality in classical and quantum settings. Each information structure can be regarded as a ringed site with trivial topology; the structure ring is generated by the observables themselves and its multiplication corresponds to joint measurement. We extend Baudot and Bennequin's definition of information cohomology to this setting, as a derived functor in the category of modules over the structure ring, and show explicitly that the bar construction gives a projective resolution in that category, recovering in this way the cochain complexes previously considered in the literature. Finally, we study the particular case of a one-parameter family of coefficients made of functions of probability distributions. The only 1-cocycles are Shannon entropy or Tsallis alpha-entropy, depending on the value of the parameter.
SEGA: Structural Entropy Guided Anchor View for Graph Contrastive Learning
In contrastive learning, the choice of ``view'' controls the information that the representation captures and influences the performance of the model. However, leading graph contrastive learning methods generally produce views via random corruption or learning, which could lead to the loss of essential information and alteration of semantic information. An anchor view that maintains the essential information of input graphs for contrastive learning has been hardly investigated. In this paper, based on the theory of graph information bottleneck, we deduce the definition of this anchor view; put differently, the anchor view with essential information of input graph is supposed to have the minimal structural uncertainty. Furthermore, guided by structural entropy, we implement the anchor view, termed SEGA, for graph contrastive learning. We extensively validate the proposed anchor view on various benchmarks regarding graph classification under unsupervised, semi-supervised, and transfer learning and achieve significant performance boosts compared to the state-of-the-art methods.
Information Maximizing Curriculum: A Curriculum-Based Approach for Imitating Diverse Skills
Imitation learning uses data for training policies to solve complex tasks. However, when the training data is collected from human demonstrators, it often leads to multimodal distributions because of the variability in human actions. Most imitation learning methods rely on a maximum likelihood (ML) objective to learn a parameterized policy, but this can result in suboptimal or unsafe behavior due to the mode-averaging property of the ML objective. In this work, we propose Information Maximizing Curriculum, a curriculum-based approach that assigns a weight to each data point and encourages the model to specialize in the data it can represent, effectively mitigating the mode-averaging problem by allowing the model to ignore data from modes it cannot represent. To cover all modes and thus, enable diverse behavior, we extend our approach to a mixture of experts (MoE) policy, where each mixture component selects its own subset of the training data for learning. A novel, maximum entropy-based objective is proposed to achieve full coverage of the dataset, thereby enabling the policy to encompass all modes within the data distribution. We demonstrate the effectiveness of our approach on complex simulated control tasks using diverse human demonstrations, achieving superior performance compared to state-of-the-art methods.
Markov Categories and Entropy
Markov categories are a novel framework to describe and treat problems in probability and information theory. In this work we combine the categorical formalism with the traditional quantitative notions of entropy, mutual information, and data processing inequalities. We show that several quantitative aspects of information theory can be captured by an enriched version of Markov categories, where the spaces of morphisms are equipped with a divergence or even a metric. As it is customary in information theory, mutual information can be defined as a measure of how far a joint source is from displaying independence of its components. More strikingly, Markov categories give a notion of determinism for sources and channels, and we can define entropy exactly by measuring how far a source or channel is from being deterministic. This recovers Shannon and R\'enyi entropies, as well as the Gini-Simpson index used in ecology to quantify diversity, and it can be used to give a conceptual definition of generalized entropy.
Entropy is not Enough for Test-Time Adaptation: From the Perspective of Disentangled Factors
Test-time adaptation (TTA) fine-tunes pre-trained deep neural networks for unseen test data. The primary challenge of TTA is limited access to the entire test dataset during online updates, causing error accumulation. To mitigate it, TTA methods have utilized the model output's entropy as a confidence metric that aims to determine which samples have a lower likelihood of causing error. Through experimental studies, however, we observed the unreliability of entropy as a confidence metric for TTA under biased scenarios and theoretically revealed that it stems from the neglect of the influence of latent disentangled factors of data on predictions. Building upon these findings, we introduce a novel TTA method named Destroy Your Object (DeYO), which leverages a newly proposed confidence metric named Pseudo-Label Probability Difference (PLPD). PLPD quantifies the influence of the shape of an object on prediction by measuring the difference between predictions before and after applying an object-destructive transformation. DeYO consists of sample selection and sample weighting, which employ entropy and PLPD concurrently. For robust adaptation, DeYO prioritizes samples that dominantly incorporate shape information when making predictions. Our extensive experiments demonstrate the consistent superiority of DeYO over baseline methods across various scenarios, including biased and wild. Project page is publicly available at https://whitesnowdrop.github.io/DeYO/.
EdgeQAT: Entropy and Distribution Guided Quantization-Aware Training for the Acceleration of Lightweight LLMs on the Edge
Despite the remarkable strides of Large Language Models (LLMs) in various fields, the wide applications of LLMs on edge devices are limited due to their massive parameters and computations. To address this, quantization is commonly adopted to generate lightweight LLMs with efficient computations and fast inference. However, Post-Training Quantization (PTQ) methods dramatically degrade in quality when quantizing weights, activations, and KV cache together to below 8 bits. Besides, many Quantization-Aware Training (QAT) works quantize model weights, leaving the activations untouched, which do not fully exploit the potential of quantization for inference acceleration on the edge. In this paper, we propose EdgeQAT, the Entropy and Distribution Guided QAT for the optimization of lightweight LLMs to achieve inference acceleration on Edge devices. We first identify that the performance drop of quantization primarily stems from the information distortion in quantized attention maps, demonstrated by the different distributions in quantized query and key of the self-attention mechanism. Then, the entropy and distribution guided QAT is proposed to mitigate the information distortion. Moreover, we design a token importance-aware adaptive method to dynamically quantize the tokens with different bit widths for further optimization and acceleration. Our extensive experiments verify the substantial improvements with our framework across various datasets. Furthermore, we achieve an on-device speedup of up to 2.37x compared with its FP16 counterparts across multiple edge devices, signaling a groundbreaking advancement.
Introducing an Improved Information-Theoretic Measure of Predictive Uncertainty
Applying a machine learning model for decision-making in the real world requires to distinguish what the model knows from what it does not. A critical factor in assessing the knowledge of a model is to quantify its predictive uncertainty. Predictive uncertainty is commonly measured by the entropy of the Bayesian model average (BMA) predictive distribution. Yet, the properness of this current measure of predictive uncertainty was recently questioned. We provide new insights regarding those limitations. Our analyses show that the current measure erroneously assumes that the BMA predictive distribution is equivalent to the predictive distribution of the true model that generated the dataset. Consequently, we introduce a theoretically grounded measure to overcome these limitations. We experimentally verify the benefits of our introduced measure of predictive uncertainty. We find that our introduced measure behaves more reasonably in controlled synthetic tasks. Moreover, our evaluations on ImageNet demonstrate that our introduced measure is advantageous in real-world applications utilizing predictive uncertainty.
An Information-Theoretic Analysis of Nonstationary Bandit Learning
In nonstationary bandit learning problems, the decision-maker must continually gather information and adapt their action selection as the latent state of the environment evolves. In each time period, some latent optimal action maximizes expected reward under the environment state. We view the optimal action sequence as a stochastic process, and take an information-theoretic approach to analyze attainable performance. We bound limiting per-period regret in terms of the entropy rate of the optimal action process. The bound applies to a wide array of problems studied in the literature and reflects the problem's information structure through its information-ratio.
Think or Not? Exploring Thinking Efficiency in Large Reasoning Models via an Information-Theoretic Lens
The recent rise of Large Reasoning Models (LRMs) has significantly improved multi-step reasoning performance, but often at the cost of generating excessively long reasoning chains. This paper revisits the efficiency of such reasoning processes through an information-theoretic lens, revealing a fundamental trade-off between reasoning length and semantic efficiency. We propose two metrics, InfoBias and InfoGain, to quantify divergence from ideal reasoning paths and stepwise information contribution, respectively. Empirical analyses show that longer reasoning chains tend to exhibit higher information bias and diminishing information gain, especially for incorrect answers. Motivated by these findings, we introduce an entropy-based Adaptive Think strategy that dynamically halts reasoning once confidence is sufficiently high, improving efficiency while maintaining competitive accuracy. Compared to the Vanilla Think approach (default mode), our strategy yields a 1.10% improvement in average accuracy and a 50.80% reduction in token usage on QwQ-32B across six benchmark tasks spanning diverse reasoning types and difficulty levels, demonstrating superior efficiency and reasoning performance. These results underscore the promise of entropy-based methods for enhancing both accuracy and cost-effiiciency in large language model deployment.
Entropy-Based Block Pruning for Efficient Large Language Models
As large language models continue to scale, their growing computational and storage demands pose significant challenges for real-world deployment. In this work, we investigate redundancy within Transformer-based models and propose an entropy-based pruning strategy to enhance efficiency while maintaining performance. Empirical analysis reveals that the entropy of hidden representations decreases in the early blocks but progressively increases across most subsequent blocks. This trend suggests that entropy serves as a more effective measure of information richness within computation blocks. Unlike cosine similarity, which primarily captures geometric relationships, entropy directly quantifies uncertainty and information content, making it a more reliable criterion for pruning. Extensive experiments demonstrate that our entropy-based pruning approach surpasses cosine similarity-based methods in reducing model size while preserving accuracy, offering a promising direction for efficient model deployment.
Rethinking Guidance Information to Utilize Unlabeled Samples:A Label Encoding Perspective
Empirical Risk Minimization (ERM) is fragile in scenarios with insufficient labeled samples. A vanilla extension of ERM to unlabeled samples is Entropy Minimization (EntMin), which employs the soft-labels of unlabeled samples to guide their learning. However, EntMin emphasizes prediction discriminability while neglecting prediction diversity. To alleviate this issue, in this paper, we rethink the guidance information to utilize unlabeled samples. By analyzing the learning objective of ERM, we find that the guidance information for labeled samples in a specific category is the corresponding label encoding. Inspired by this finding, we propose a Label-Encoding Risk Minimization (LERM). It first estimates the label encodings through prediction means of unlabeled samples and then aligns them with their corresponding ground-truth label encodings. As a result, the LERM ensures both prediction discriminability and diversity, and it can be integrated into existing methods as a plugin. Theoretically, we analyze the relationships between LERM and ERM as well as EntMin. Empirically, we verify the superiority of the LERM under several label insufficient scenarios. The codes are available at https://github.com/zhangyl660/LERM.
A Functional Information Perspective on Model Interpretation
Contemporary predictive models are hard to interpret as their deep nets exploit numerous complex relations between input elements. This work suggests a theoretical framework for model interpretability by measuring the contribution of relevant features to the functional entropy of the network with respect to the input. We rely on the log-Sobolev inequality that bounds the functional entropy by the functional Fisher information with respect to the covariance of the data. This provides a principled way to measure the amount of information contribution of a subset of features to the decision function. Through extensive experiments, we show that our method surpasses existing interpretability sampling-based methods on various data signals such as image, text, and audio.
Large Language Model Evaluation via Matrix Entropy
Large language models (LLMs) have revolutionized the field of natural language processing, extending their strong capabilities into multi-modal domains. Thus, it is vital to define proper and diversified metrics for the evaluation of LLMs. In this paper, we introduce matrix entropy, a novel metric rooted in information theory and geometry principles to quantify the data compression proficiency in LLMs. It reflects the model's ability to extract relevant information and eliminate unnecessary elements, thereby providing insight into the language model's intrinsic capability. Specifically, we demonstrate its applicability in both single-modal (language) and multi-modal settings. For language models, our findings reveal that the matrix entropy of representations follows a scaling law type reduction when the model scales up, serving as a complement to the traditional loss scaling law. For the multi-modal setting, we also propose an evaluation method based on matrix entropy for assessing alignment quality and we find that modern large multi-modal models exhibit great alignment performance.
LLM$\times$MapReduce-V2: Entropy-Driven Convolutional Test-Time Scaling for Generating Long-Form Articles from Extremely Long Resources
Long-form generation is crucial for a wide range of practical applications, typically categorized into short-to-long and long-to-long generation. While short-to-long generations have received considerable attention, generating long texts from extremely long resources remains relatively underexplored. The primary challenge in long-to-long generation lies in effectively integrating and analyzing relevant information from extensive inputs, which remains difficult for current large language models (LLMs). In this paper, we propose LLMtimesMapReduce-V2, a novel test-time scaling strategy designed to enhance the ability of LLMs to process extremely long inputs. Drawing inspiration from convolutional neural networks, which iteratively integrate local features into higher-level global representations, LLMtimesMapReduce-V2 utilizes stacked convolutional scaling layers to progressively expand the understanding of input materials. Both quantitative and qualitative experimental results demonstrate that our approach substantially enhances the ability of LLMs to process long inputs and generate coherent, informative long-form articles, outperforming several representative baselines.
MINDE: Mutual Information Neural Diffusion Estimation
In this work we present a new method for the estimation of Mutual Information (MI) between random variables. Our approach is based on an original interpretation of the Girsanov theorem, which allows us to use score-based diffusion models to estimate the Kullback Leibler divergence between two densities as a difference between their score functions. As a by-product, our method also enables the estimation of the entropy of random variables. Armed with such building blocks, we present a general recipe to measure MI, which unfolds in two directions: one uses conditional diffusion process, whereas the other uses joint diffusion processes that allow simultaneous modelling of two random variables. Our results, which derive from a thorough experimental protocol over all the variants of our approach, indicate that our method is more accurate than the main alternatives from the literature, especially for challenging distributions. Furthermore, our methods pass MI self-consistency tests, including data processing and additivity under independence, which instead are a pain-point of existing methods.
The Scaling Law for LoRA Base on Mutual Information Upper Bound
LoRA (Low-Rank Adaptation) is a widely used model fine-tuning method. In fine-tuning, the law among model performance, model parameters, and data complexity has been a focal issue in the field. Existing methods often leverage external metrics (such as cross-entropy or perplexity) to evaluate model performance. In the fine-tuning process for large models, two types of knowledge are typically involved: the frozen, general knowledge acquired by the model during pre-training and the new knowledge learned through the LoRA module from the current data. Generally, the less LoRA's learned knowledge relies on the large model, the more it captures the specific knowledge of new data, thereby enhancing its adaptability to new tasks. However, external metrics do not readily capture the dependency relationship between these two types of knowledge. Therefore, we designed an internal metric based on the Mutual Information Upper Bound (MIUB) theory to investigate the scaling law of large-model LoRA fine-tuning. In our experiments, we validated this approach on benchmark datasets, using the Llama3-8B and Phi3-3B models. The results show that the proposed MIUB metric aligns more accurately and stably with the scaling law of LoRA fine-tuning compared to cross-entropy and perplexity.
SEED-GRPO: Semantic Entropy Enhanced GRPO for Uncertainty-Aware Policy Optimization
Large language models (LLMs) exhibit varying levels of confidence across input prompts (questions): some lead to consistent, semantically similar answers, while others yield diverse or contradictory outputs. This variation reflects LLM's uncertainty about the input prompt, a signal of how confidently the model understands a given problem. However, vanilla Group Relative Policy Optimization (GRPO) treats all prompts equally during policy updates, ignoring this important information about the model's knowledge boundaries. To address this limitation, we propose SEED-GRPO (Semantic Entropy EnhanceD GRPO), which explicitly measures LLMs' uncertainty of the input prompts semantic entropy. Semantic entropy measures the diversity of meaning in multiple generated answers given a prompt and uses this to modulate the magnitude of policy updates. This uncertainty-aware training mechanism enables dynamic adjustment of policy update magnitudes based on question uncertainty. It allows more conservative updates on high-uncertainty questions while maintaining the original learning signal on confident ones. Experimental results on five mathematical reasoning benchmarks (AIME24 56.7, AMC 68.7, MATH 83.4, Minerva 34.2, and OlympiadBench 48.0) demonstrate that SEED-GRPO achieves new state-of-the-art performance in average accuracy, validating the effectiveness of uncertainty-aware policy optimization.
The Role of Entropy and Reconstruction in Multi-View Self-Supervised Learning
The mechanisms behind the success of multi-view self-supervised learning (MVSSL) are not yet fully understood. Contrastive MVSSL methods have been studied through the lens of InfoNCE, a lower bound of the Mutual Information (MI). However, the relation between other MVSSL methods and MI remains unclear. We consider a different lower bound on the MI consisting of an entropy and a reconstruction term (ER), and analyze the main MVSSL families through its lens. Through this ER bound, we show that clustering-based methods such as DeepCluster and SwAV maximize the MI. We also re-interpret the mechanisms of distillation-based approaches such as BYOL and DINO, showing that they explicitly maximize the reconstruction term and implicitly encourage a stable entropy, and we confirm this empirically. We show that replacing the objectives of common MVSSL methods with this ER bound achieves competitive performance, while making them stable when training with smaller batch sizes or smaller exponential moving average (EMA) coefficients. Github repo: https://github.com/apple/ml-entropy-reconstruction.
MaxInfoRL: Boosting exploration in reinforcement learning through information gain maximization
Reinforcement learning (RL) algorithms aim to balance exploiting the current best strategy with exploring new options that could lead to higher rewards. Most common RL algorithms use undirected exploration, i.e., select random sequences of actions. Exploration can also be directed using intrinsic rewards, such as curiosity or model epistemic uncertainty. However, effectively balancing task and intrinsic rewards is challenging and often task-dependent. In this work, we introduce a framework, MaxInfoRL, for balancing intrinsic and extrinsic exploration. MaxInfoRL steers exploration towards informative transitions, by maximizing intrinsic rewards such as the information gain about the underlying task. When combined with Boltzmann exploration, this approach naturally trades off maximization of the value function with that of the entropy over states, rewards, and actions. We show that our approach achieves sublinear regret in the simplified setting of multi-armed bandits. We then apply this general formulation to a variety of off-policy model-free RL methods for continuous state-action spaces, yielding novel algorithms that achieve superior performance across hard exploration problems and complex scenarios such as visual control tasks.
Singing Voice Separation Using a Deep Convolutional Neural Network Trained by Ideal Binary Mask and Cross Entropy
Separating a singing voice from its music accompaniment remains an important challenge in the field of music information retrieval. We present a unique neural network approach inspired by a technique that has revolutionized the field of vision: pixel-wise image classification, which we combine with cross entropy loss and pretraining of the CNN as an autoencoder on singing voice spectrograms. The pixel-wise classification technique directly estimates the sound source label for each time-frequency (T-F) bin in our spectrogram image, thus eliminating common pre- and postprocessing tasks. The proposed network is trained by using the Ideal Binary Mask (IBM) as the target output label. The IBM identifies the dominant sound source in each T-F bin of the magnitude spectrogram of a mixture signal, by considering each T-F bin as a pixel with a multi-label (for each sound source). Cross entropy is used as the training objective, so as to minimize the average probability error between the target and predicted label for each pixel. By treating the singing voice separation problem as a pixel-wise classification task, we additionally eliminate one of the commonly used, yet not easy to comprehend, postprocessing steps: the Wiener filter postprocessing. The proposed CNN outperforms the first runner up in the Music Information Retrieval Evaluation eXchange (MIREX) 2016 and the winner of MIREX 2014 with a gain of 2.2702 ~ 5.9563 dB global normalized source to distortion ratio (GNSDR) when applied to the iKala dataset. An experiment with the DSD100 dataset on the full-tracks song evaluation task also shows that our model is able to compete with cutting-edge singing voice separation systems which use multi-channel modeling, data augmentation, and model blending.
Structured Knowledge Accumulation: An Autonomous Framework for Layer-Wise Entropy Reduction in Neural Learning
We introduce the Structured Knowledge Accumulation (SKA) framework, which reinterprets entropy as a dynamic, layer-wise measure of knowledge alignment in neural networks. Instead of relying on traditional gradient-based optimization, SKA defines entropy in terms of knowledge vectors and their influence on decision probabilities across multiple layers. This formulation naturally leads to the emergence of activation functions such as the sigmoid as a consequence of entropy minimization. Unlike conventional backpropagation, SKA allows each layer to optimize independently by aligning its knowledge representation with changes in decision probabilities. As a result, total network entropy decreases in a hierarchical manner, allowing knowledge structures to evolve progressively. This approach provides a scalable, biologically plausible alternative to gradient-based learning, bridging information theory and artificial intelligence while offering promising applications in resource-constrained and parallel computing environments.
Scaling Laws for Autoregressive Generative Modeling
We identify empirical scaling laws for the cross-entropy loss in four domains: generative image modeling, video modeling, multimodal imageleftrightarrowtext models, and mathematical problem solving. In all cases autoregressive Transformers smoothly improve in performance as model size and compute budgets increase, following a power-law plus constant scaling law. The optimal model size also depends on the compute budget through a power-law, with exponents that are nearly universal across all data domains. The cross-entropy loss has an information theoretic interpretation as S(True) + D_{KL}(True||Model), and the empirical scaling laws suggest a prediction for both the true data distribution's entropy and the KL divergence between the true and model distributions. With this interpretation, billion-parameter Transformers are nearly perfect models of the YFCC100M image distribution downsampled to an 8times 8 resolution, and we can forecast the model size needed to achieve any given reducible loss (ie D_{KL}) in nats/image for other resolutions. We find a number of additional scaling laws in specific domains: (a) we identify a scaling relation for the mutual information between captions and images in multimodal models, and show how to answer the question "Is a picture worth a thousand words?"; (b) in the case of mathematical problem solving, we identify scaling laws for model performance when extrapolating beyond the training distribution; (c) we finetune generative image models for ImageNet classification and find smooth scaling of the classification loss and error rate, even as the generative loss levels off. Taken together, these results strengthen the case that scaling laws have important implications for neural network performance, including on downstream tasks.
Towards Multi-Granularity Memory Association and Selection for Long-Term Conversational Agents
Large Language Models (LLMs) have recently been widely adopted in conversational agents. However, the increasingly long interactions between users and agents accumulate extensive dialogue records, making it difficult for LLMs with limited context windows to maintain a coherent long-term dialogue memory and deliver personalized responses. While retrieval-augmented memory systems have emerged to address this issue, existing methods often depend on single-granularity memory segmentation and retrieval. This approach falls short in capturing deep memory connections, leading to partial retrieval of useful information or substantial noise, resulting in suboptimal performance. To tackle these limits, we propose MemGAS, a framework that enhances memory consolidation by constructing multi-granularity association, adaptive selection, and retrieval. MemGAS is based on multi-granularity memory units and employs Gaussian Mixture Models to cluster and associate new memories with historical ones. An entropy-based router adaptively selects optimal granularity by evaluating query relevance distributions and balancing information completeness and noise. Retrieved memories are further refined via LLM-based filtering. Experiments on four long-term memory benchmarks demonstrate that MemGAS outperforms state-of-the-art methods on both question answer and retrieval tasks, achieving superior performance across different query types and top-K settings.
Collaborative Training of Balanced Random Forests for Open Set Domain Adaptation
In this paper, we introduce a collaborative training algorithm of balanced random forests with convolutional neural networks for domain adaptation tasks. In real scenarios, most domain adaptation algorithms face the challenges from noisy, insufficient training data and open set categorization. In such cases, conventional methods suffer from overfitting and fail to successfully transfer the knowledge of the source to the target domain. To address these issues, the following two techniques are proposed. First, we introduce the optimized decision tree construction method with convolutional neural networks, in which the data at each node are split into equal sizes while maximizing the information gain. It generates balanced decision trees on deep features because of the even-split constraint, which contributes to enhanced discrimination power and reduced overfitting problem. Second, to tackle the domain misalignment problem, we propose the domain alignment loss which penalizes uneven splits of the source and target domain data. By collaboratively optimizing the information gain of the labeled source data as well as the entropy of unlabeled target data distributions, the proposed CoBRF algorithm achieves significantly better performance than the state-of-the-art methods.
70% Size, 100% Accuracy: Lossless LLM Compression for Efficient GPU Inference via Dynamic-Length Float
Large Language Models (LLMs) have grown rapidly in size, creating significant challenges for efficient deployment on resource-constrained hardware. In this paper, we introduce Dynamic-Length Float (DFloat11), a lossless compression framework that reduces LLM size by 30% while preserving outputs that are bit-for-bit identical to the original model. DFloat11 is motivated by the low entropy in the BFloat16 weight representation of LLMs, which reveals significant inefficiency in existing storage format. By applying entropy coding, DFloat11 assigns dynamic-length encodings to weights based on frequency, achieving near information-optimal compression without any loss of precision. To facilitate efficient inference with dynamic-length encodings, we develop a custom GPU kernel for fast online decompression. Our design incorporates the following: (i) decomposition of memory-intensive lookup tables (LUTs) into compact LUTs that fit in GPU SRAM, (ii) a two-phase kernel for coordinating thread read/write positions using lightweight auxiliary variables, and (iii) transformer-block-level decompression to minimize latency. Experiments on recent models, including Llama-3.1, Qwen-2.5, and Gemma-3, validates our hypothesis that DFloat11 achieves around 30% model size reduction while preserving bit-for-bit exact outputs. Compared to a potential alternative of offloading parts of an uncompressed model to the CPU to meet memory constraints, DFloat11 achieves 1.9-38.8x higher throughput in token generation. With a fixed GPU memory budget, DFloat11 enables 5.3-13.17x longer context lengths than uncompressed models. Notably, our method enables lossless inference of Llama-3.1-405B, an 810GB model, on a single node equipped with 8x80GB GPUs. Our code and models are available at https://github.com/LeanModels/DFloat11.
Rep-MTL: Unleashing the Power of Representation-level Task Saliency for Multi-Task Learning
Despite the promise of Multi-Task Learning in leveraging complementary knowledge across tasks, existing multi-task optimization (MTO) techniques remain fixated on resolving conflicts via optimizer-centric loss scaling and gradient manipulation strategies, yet fail to deliver consistent gains. In this paper, we argue that the shared representation space, where task interactions naturally occur, offers rich information and potential for operations complementary to existing optimizers, especially for facilitating the inter-task complementarity, which is rarely explored in MTO. This intuition leads to Rep-MTL, which exploits the representation-level task saliency to quantify interactions between task-specific optimization and shared representation learning. By steering these saliencies through entropy-based penalization and sample-wise cross-task alignment, Rep-MTL aims to mitigate negative transfer by maintaining the effective training of individual tasks instead pure conflict-solving, while explicitly promoting complementary information sharing. Experiments are conducted on four challenging MTL benchmarks covering both task-shift and domain-shift scenarios. The results show that Rep-MTL, even paired with the basic equal weighting policy, achieves competitive performance gains with favorable efficiency. Beyond standard performance metrics, Power Law exponent analysis demonstrates Rep-MTL's efficacy in balancing task-specific learning and cross-task sharing. The project page is available at HERE.
Sparse Concept Coded Tetrolet Transform for Unconstrained Odia Character Recognition
Feature representation in the form of spatio-spectral decomposition is one of the robust techniques adopted in automatic handwritten character recognition systems. In this regard, we propose a new image representation approach for unconstrained handwritten alphanumeric characters using sparse concept coded Tetrolets. Tetrolets, which does not use fixed dyadic square blocks for spectral decomposition like conventional wavelets, preserve the localized variations in handwritings by adopting tetrominoes those capture the shape geometry. The sparse concept coding of low entropy Tetrolet representation is found to extract the important hidden information (concept) for superior pattern discrimination. Large scale experimentation using ten databases in six different scripts (Bangla, Devanagari, Odia, English, Arabic and Telugu) has been performed. The proposed feature representation along with standard classifiers such as random forest, support vector machine (SVM), nearest neighbor and modified quadratic discriminant function (MQDF) is found to achieve state-of-the-art recognition performance in all the databases, viz. 99.40% (MNIST); 98.72% and 93.24% (IITBBS); 99.38% and 99.22% (ISI Kolkata). The proposed OCR system is shown to perform better than other sparse based techniques such as PCA, SparsePCA and SparseLDA, as well as better than existing transforms (Wavelet, Slantlet and Stockwell).
DomainAdaptor: A Novel Approach to Test-time Adaptation
To deal with the domain shift between training and test samples, current methods have primarily focused on learning generalizable features during training and ignore the specificity of unseen samples that are also critical during the test. In this paper, we investigate a more challenging task that aims to adapt a trained CNN model to unseen domains during the test. To maximumly mine the information in the test data, we propose a unified method called DomainAdaptor for the test-time adaptation, which consists of an AdaMixBN module and a Generalized Entropy Minimization (GEM) loss. Specifically, AdaMixBN addresses the domain shift by adaptively fusing training and test statistics in the normalization layer via a dynamic mixture coefficient and a statistic transformation operation. To further enhance the adaptation ability of AdaMixBN, we design a GEM loss that extends the Entropy Minimization loss to better exploit the information in the test data. Extensive experiments show that DomainAdaptor consistently outperforms the state-of-the-art methods on four benchmarks. Furthermore, our method brings more remarkable improvement against existing methods on the few-data unseen domain. The code is available at https://github.com/koncle/DomainAdaptor.
Diversity is All You Need: Learning Skills without a Reward Function
Intelligent creatures can explore their environments and learn useful skills without supervision. In this paper, we propose DIAYN ('Diversity is All You Need'), a method for learning useful skills without a reward function. Our proposed method learns skills by maximizing an information theoretic objective using a maximum entropy policy. On a variety of simulated robotic tasks, we show that this simple objective results in the unsupervised emergence of diverse skills, such as walking and jumping. In a number of reinforcement learning benchmark environments, our method is able to learn a skill that solves the benchmark task despite never receiving the true task reward. We show how pretrained skills can provide a good parameter initialization for downstream tasks, and can be composed hierarchically to solve complex, sparse reward tasks. Our results suggest that unsupervised discovery of skills can serve as an effective pretraining mechanism for overcoming challenges of exploration and data efficiency in reinforcement learning.
A Context-Aware Dual-Metric Framework for Confidence Estimation in Large Language Models
Accurate confidence estimation is essential for trustworthy large language models (LLMs) systems, as it empowers the user to determine when to trust outputs and enables reliable deployment in safety-critical applications. Current confidence estimation methods for LLMs neglect the relevance between responses and contextual information, a crucial factor in output quality evaluation, particularly in scenarios where background knowledge is provided. To bridge this gap, we propose CRUX (Context-aware entropy Reduction and Unified consistency eXamination), the first framework that integrates context faithfulness and consistency for confidence estimation via two novel metrics. First, contextual entropy reduction represents data uncertainty with the information gain through contrastive sampling with and without context. Second, unified consistency examination captures potential model uncertainty through the global consistency of the generated answers with and without context. Experiments across three benchmark datasets (CoQA, SQuAD, QuAC) and two domain-specific datasets (BioASQ, EduQG) demonstrate CRUX's effectiveness, achieving the highest AUROC than existing baselines.
Uncertainty-Aware Guidance for Target Tracking subject to Intermittent Measurements using Motion Model Learning
This paper presents a novel guidance law for target tracking applications where the target motion model is unknown and sensor measurements are intermittent due to unknown environmental conditions and low measurement update rate. In this work, the target motion model is represented by a transformer neural network and trained by previous target position measurements. This transformer motion model serves as the prediction step in a particle filter for target state estimation and uncertainty quantification. The particle filter estimation uncertainty is utilized in the information-driven guidance law to compute a path for the mobile agent to travel to a position with maximum expected entropy reduction (EER). The computation of EER is performed in real-time by approximating the information gain from the predicted particle distributions relative to the current distribution. Simulation and hardware experiments are performed with a quadcopter agent and TurtleBot target to demonstrate that the presented guidance law outperforms two other baseline guidance methods.
A Fundamental Duality in the Mathematical and Natural Sciences: From Logic to Biology
This is an essay in what might be called ``mathematical metaphysics.'' There is a fundamental duality that run through mathematics and the natural sciences. The duality starts as the logical level; it is represented by the Boolean logic of subsets and the logic of partitions since subsets and partitions are category-theoretic dual concepts. In more basic terms, it starts with the duality between the elements (Its) of subsets and the distinctions (Dits, i.e., ordered pairs of elements in different blocks) of a partition. Mathematically, the Its & Dits duality is fully developed in category theory as the reverse-the-arrows duality. The quantitative versions of subsets and partitions are developed as probability theory and information theory (based on logical entropy). Classical physics was based on a view of reality as definite all the way down. In contrast, quantum physics embodies (objective) indefiniteness. And finally, there are the two fundamental dual mechanisms at work in biology, the selectionist mechanism and the generative mechanism, two mechanisms that embody the fundamental duality.
Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications
In many machine learning systems that jointly learn from multiple modalities, a core research question is to understand the nature of multimodal interactions: the emergence of new task-relevant information during learning from both modalities that was not present in either alone. We study this challenge of interaction quantification in a semi-supervised setting with only labeled unimodal data and naturally co-occurring multimodal data (e.g., unlabeled images and captions, video and corresponding audio) but when labeling them is time-consuming. Using a precise information-theoretic definition of interactions, our key contributions are the derivations of lower and upper bounds to quantify the amount of multimodal interactions in this semi-supervised setting. We propose two lower bounds based on the amount of shared information between modalities and the disagreement between separately trained unimodal classifiers, and derive an upper bound through connections to approximate algorithms for min-entropy couplings. We validate these estimated bounds and show how they accurately track true interactions. Finally, two semi-supervised multimodal applications are explored based on these theoretical results: (1) analyzing the relationship between multimodal performance and estimated interactions, and (2) self-supervised learning that embraces disagreement between modalities beyond agreement as is typically done.
TeSLA: Test-Time Self-Learning With Automatic Adversarial Augmentation
Most recent test-time adaptation methods focus on only classification tasks, use specialized network architectures, destroy model calibration or rely on lightweight information from the source domain. To tackle these issues, this paper proposes a novel Test-time Self-Learning method with automatic Adversarial augmentation dubbed TeSLA for adapting a pre-trained source model to the unlabeled streaming test data. In contrast to conventional self-learning methods based on cross-entropy, we introduce a new test-time loss function through an implicitly tight connection with the mutual information and online knowledge distillation. Furthermore, we propose a learnable efficient adversarial augmentation module that further enhances online knowledge distillation by simulating high entropy augmented images. Our method achieves state-of-the-art classification and segmentation results on several benchmarks and types of domain shifts, particularly on challenging measurement shifts of medical images. TeSLA also benefits from several desirable properties compared to competing methods in terms of calibration, uncertainty metrics, insensitivity to model architectures, and source training strategies, all supported by extensive ablations. Our code and models are available on GitHub.
Locally Typical Sampling
Today's probabilistic language generators fall short when it comes to producing coherent and fluent text despite the fact that the underlying models perform well under standard metrics, e.g., perplexity. This discrepancy has puzzled the language generation community for the last few years. In this work, we posit that the abstraction of natural language generation as a discrete stochastic process--which allows for an information-theoretic analysis--can provide new insights into the behavior of probabilistic language generators, e.g., why high-probability texts can be dull or repetitive. Humans use language as a means of communicating information, aiming to do so in a simultaneously efficient and error-minimizing manner; in fact, psycholinguistics research suggests humans choose each word in a string with this subconscious goal in mind. We formally define the set of strings that meet this criterion: those for which each word has an information content close to the expected information content, i.e., the conditional entropy of our model. We then propose a simple and efficient procedure for enforcing this criterion when generating from probabilistic models, which we call locally typical sampling. Automatic and human evaluations show that, in comparison to nucleus and top-k sampling, locally typical sampling offers competitive performance (in both abstractive summarization and story generation) in terms of quality while consistently reducing degenerate repetitions.
Bridging Continuous and Discrete Tokens for Autoregressive Visual Generation
Autoregressive visual generation models typically rely on tokenizers to compress images into tokens that can be predicted sequentially. A fundamental dilemma exists in token representation: discrete tokens enable straightforward modeling with standard cross-entropy loss, but suffer from information loss and tokenizer training instability; continuous tokens better preserve visual details, but require complex distribution modeling, complicating the generation pipeline. In this paper, we propose TokenBridge, which bridges this gap by maintaining the strong representation capacity of continuous tokens while preserving the modeling simplicity of discrete tokens. To achieve this, we decouple discretization from the tokenizer training process through post-training quantization that directly obtains discrete tokens from continuous representations. Specifically, we introduce a dimension-wise quantization strategy that independently discretizes each feature dimension, paired with a lightweight autoregressive prediction mechanism that efficiently model the resulting large token space. Extensive experiments show that our approach achieves reconstruction and generation quality on par with continuous methods while using standard categorical prediction. This work demonstrates that bridging discrete and continuous paradigms can effectively harness the strengths of both approaches, providing a promising direction for high-quality visual generation with simple autoregressive modeling. Project page: https://yuqingwang1029.github.io/TokenBridge.
Memorization-Compression Cycles Improve Generalization
We prove theoretically that generalization improves not only through data scaling but also by compressing internal representations. To operationalize this insight, we introduce the Information Bottleneck Language Modeling (IBLM) objective, which reframes language modeling as a constrained optimization problem: minimizing representation entropy subject to optimal prediction performance. Empirically, we observe an emergent memorization-compression cycle during LLM pretraining, evidenced by oscillation positive/negative gradient alignment between cross-entropy and Matrix-Based Entropy (MBE), a measure of representation entropy. This pattern closely mirrors the predictive-compressive trade-off prescribed by IBLM and also parallels the biological alternation between awake learning and sleep consolidation. Motivated by this observation, we propose Gated Phase Transition (GAPT), a training algorithm that adaptively switches between memorization and compression phases. When applied to GPT-2 pretraining on FineWeb dataset, GAPT reduces MBE by 50% and improves cross-entropy by 4.8%. GAPT improves OOD generalizatino by 35% in a pretraining task on arithmetic multiplication. In a setting designed to simulate catastrophic forgetting, GAPT reduces interference by compressing and separating representations, achieving a 97% improvement in separation - paralleling the functional role of sleep consolidation.
Tensor Networks for Explainable Machine Learning in Cybersecurity
In this paper we show how tensor networks help in developing explainability of machine learning algorithms. Specifically, we develop an unsupervised clustering algorithm based on Matrix Product States (MPS) and apply it in the context of a real use-case of adversary-generated threat intelligence. Our investigation proves that MPS rival traditional deep learning models such as autoencoders and GANs in terms of performance, while providing much richer model interpretability. Our approach naturally facilitates the extraction of feature-wise probabilities, Von Neumann Entropy, and mutual information, offering a compelling narrative for classification of anomalies and fostering an unprecedented level of transparency and interpretability, something fundamental to understand the rationale behind artificial intelligence decisions.
Trajectories of Change: Approaches for Tracking Knowledge Evolution
We explore local vs. global evolution of knowledge systems through the framework of socio-epistemic networks (SEN), applying two complementary methods to a corpus of scientific texts. The framework comprises three interconnected layers-social, semiotic (material), and semantic-proposing a multilayered approach to understanding structural developments of knowledge. To analyse diachronic changes on the semantic layer, we first use information-theoretic measures based on relative entropy to detect semantic shifts, assess their significance, and identify key driving features. Second, variations in document embedding densities reveal changes in semantic neighbourhoods, tracking how concentration of similar documents increase, remain stable, or disperse. This enables us to trace document trajectories based on content (topics) or metadata (authorship, institution). Case studies of Joseph Silk and Hans-J\"urgen Treder illustrate how individual scholar's work aligns with broader disciplinary shifts in general relativity and gravitation research, demonstrating the applications, limitations, and further potential of this approach.
Training-free Diffusion Model Adaptation for Variable-Sized Text-to-Image Synthesis
Diffusion models (DMs) have recently gained attention with state-of-the-art performance in text-to-image synthesis. Abiding by the tradition in deep learning, DMs are trained and evaluated on the images with fixed sizes. However, users are demanding for various images with specific sizes and various aspect ratio. This paper focuses on adapting text-to-image diffusion models to handle such variety while maintaining visual fidelity. First we observe that, during the synthesis, lower resolution images suffer from incomplete object portrayal, while higher resolution images exhibit repetitively disordered presentation. Next, we establish a statistical relationship indicating that attention entropy changes with token quantity, suggesting that models aggregate spatial information in proportion to image resolution. The subsequent interpretation on our observations is that objects are incompletely depicted due to limited spatial information for low resolutions, while repetitively disorganized presentation arises from redundant spatial information for high resolutions. From this perspective, we propose a scaling factor to alleviate the change of attention entropy and mitigate the defective pattern observed. Extensive experimental results validate the efficacy of the proposed scaling factor, enabling models to achieve better visual effects, image quality, and text alignment. Notably, these improvements are achieved without additional training or fine-tuning techniques.
Intrinsically-Motivated Humans and Agents in Open-World Exploration
What drives exploration? Understanding intrinsic motivation is a long-standing challenge in both cognitive science and artificial intelligence; numerous objectives have been proposed and used to train agents, yet there remains a gap between human and agent exploration. We directly compare adults, children, and AI agents in a complex open-ended environment, Crafter, and study how common intrinsic objectives: Entropy, Information Gain, and Empowerment, relate to their behavior. We find that only Entropy and Empowerment are consistently positively correlated with human exploration progress, indicating that these objectives may better inform intrinsic reward design for agents. Furthermore, across agents and humans we observe that Entropy initially increases rapidly, then plateaus, while Empowerment increases continuously, suggesting that state diversity may provide more signal in early exploration, while advanced exploration should prioritize control. Finally, we find preliminary evidence that private speech utterances, and particularly goal verbalizations, may aid exploration in children. Our data is available at https://github.com/alyd/humans_in_crafter_data.
Assessing Correctness in LLM-Based Code Generation via Uncertainty Estimation
In this work, we explore uncertainty estimation as a proxy for correctness in LLM-generated code. To this end, we adapt two state-of-the-art techniques from natural language generation -- one based on entropy and another on mutual information -- to the domain of code generation. Given the distinct semantic properties of code, we introduce modifications, including a semantic equivalence check based on symbolic execution. Our findings indicate a strong correlation between the uncertainty computed through these techniques and correctness, highlighting the potential of uncertainty estimation for quality assessment. Additionally, we propose a simplified version of the entropy-based method that assumes a uniform distribution over the LLM's responses, demonstrating comparable effectiveness. Using these techniques, we develop an abstention policy that prevents the model from making predictions when uncertainty is high, reducing incorrect outputs to near zero. Our evaluation on the LiveCodeBench shows that our approach significantly outperforms a baseline relying solely on LLM-reported log-probabilities.
Label Distributionally Robust Losses for Multi-class Classification: Consistency, Robustness and Adaptivity
We study a family of loss functions named label-distributionally robust (LDR) losses for multi-class classification that are formulated from distributionally robust optimization (DRO) perspective, where the uncertainty in the given label information are modeled and captured by taking the worse case of distributional weights. The benefits of this perspective are several fold: (i) it provides a unified framework to explain the classical cross-entropy (CE) loss and SVM loss and their variants, (ii) it includes a special family corresponding to the temperature-scaled CE loss, which is widely adopted but poorly understood; (iii) it allows us to achieve adaptivity to the uncertainty degree of label information at an instance level. Our contributions include: (1) we study both consistency and robustness by establishing top-k (forall kgeq 1) consistency of LDR losses for multi-class classification, and a negative result that a top-1 consistent and symmetric robust loss cannot achieve top-k consistency simultaneously for all kgeq 2; (2) we propose a new adaptive LDR loss that automatically adapts the individualized temperature parameter to the noise degree of class label of each instance; (3) we demonstrate stable and competitive performance for the proposed adaptive LDR loss on 7 benchmark datasets under 6 noisy label and 1 clean settings against 13 loss functions, and on one real-world noisy dataset. The code is open-sourced at https://github.com/Optimization-AI/ICML2023_LDR.
The information-theoretic foundation of thermodynamic work extraction
In this paper I apply newly-proposed information-theoretic principles to thermodynamic work extraction. I show that if it is possible to extract work deterministically from a physical system prepared in any one of a set of states, then those states must be distinguishable from one another. This result is formulated independently of scale and of particular dynamical laws; it also provides a novel connection between thermodynamics and information theory, established via the law of conservation of energy (rather than the second law of thermodynamics). Albeit compatible with these conclusions, existing thermodynamics approaches cannot provide a result of such generality, because they are scale-dependent (relying on ensembles or coarse-graining) or tied to particular dynamical laws. This paper thus provides a broader foundation for thermodynamics, with implications for the theory of von Neumann's universal constructor
Physics in Next-token Prediction
We discovered the underlying physics in Next-token Prediction (NTP). We identified the law of information conservation within NTP and proposed the First Law of Information Capacity (IC-1), demonstrating that the essence of intelligence emergence in auto-regressive models is fundamentally a process of information transfer. We also introduced Landauer's Principle into NTP, formulating the Second Law of Information Capacity (IC-2), which establishes the relationship between auto-regressive model training and energy consumption. Additionally, we presented several corollaries, which hold practical significance for production practices. Finally, we validated the compatibility and complementarity of our findings with existing theories.
SΩI: Score-based O-INFORMATION Estimation
The analysis of scientific data and complex multivariate systems requires information quantities that capture relationships among multiple random variables. Recently, new information-theoretic measures have been developed to overcome the shortcomings of classical ones, such as mutual information, that are restricted to considering pairwise interactions. Among them, the concept of information synergy and redundancy is crucial for understanding the high-order dependencies between variables. One of the most prominent and versatile measures based on this concept is O-information, which provides a clear and scalable way to quantify the synergy-redundancy balance in multivariate systems. However, its practical application is limited to simplified cases. In this work, we introduce SOmegaI, which allows for the first time to compute O-information without restrictive assumptions about the system. Our experiments validate our approach on synthetic data, and demonstrate the effectiveness of SOmegaI in the context of a real-world use case.
The role of quantum information in thermodynamics --- a topical review
This topical review article gives an overview of the interplay between quantum information theory and thermodynamics of quantum systems. We focus on several trending topics including the foundations of statistical mechanics, resource theories, entanglement in thermodynamic settings, fluctuation theorems and thermal machines. This is not a comprehensive review of the diverse field of quantum thermodynamics; rather, it is a convenient entry point for the thermo-curious information theorist. Furthermore this review should facilitate the unification and understanding of different interdisciplinary approaches emerging in research groups around the world.
On the impossibility of discovering a formula for primes using AI
The present work explores the theoretical limits of Machine Learning (ML) within the framework of Kolmogorov's theory of Algorithmic Probability, which clarifies the notion of entropy as Expected Kolmogorov Complexity and formalizes other fundamental concepts such as Occam's razor via Levin's Universal Distribution. As a fundamental application, we develop Maximum Entropy methods that allow us to derive the Erdos--Kac Law in Probabilistic Number Theory, and establish the impossibility of discovering a formula for primes using Machine Learning via the Prime Coding Theorem.
Shannon information and integrated information: message and meaning
Information theory, introduced by Shannon, has been extremely successful and influential as a mathematical theory of communication. Shannon's notion of information does not consider the meaning of the messages being communicated but only their probability. Even so, computational approaches regularly appeal to "information processing" to study how meaning is encoded and decoded in natural and artificial systems. Here, we contrast Shannon information theory with integrated information theory (IIT), which was developed to account for the presence and properties of consciousness. IIT considers meaning as integrated information and characterizes it as a structure, rather than as a message or code. In principle, IIT's axioms and postulates allow one to "unfold" a cause-effect structure from a substrate in a state, a structure that fully defines the intrinsic meaning of an experience and its contents. It follows that, for the communication of meaning, the cause-effect structures of sender and receiver must be similar.
Quantifying the Rise and Fall of Complexity in Closed Systems: The Coffee Automaton
In contrast to entropy, which increases monotonically, the "complexity" or "interestingness" of closed systems seems intuitively to increase at first and then decrease as equilibrium is approached. For example, our universe lacked complex structures at the Big Bang and will also lack them after black holes evaporate and particles are dispersed. This paper makes an initial attempt to quantify this pattern. As a model system, we use a simple, two-dimensional cellular automaton that simulates the mixing of two liquids ("coffee" and "cream"). A plausible complexity measure is then the Kolmogorov complexity of a coarse-grained approximation of the automaton's state, which we dub the "apparent complexity." We study this complexity measure, and show analytically that it never becomes large when the liquid particles are non-interacting. By contrast, when the particles do interact, we give numerical evidence that the complexity reaches a maximum comparable to the "coffee cup's" horizontal dimension. We raise the problem of proving this behavior analytically.
Constructor Theory of Information
We present a theory of information expressed solely in terms of which transformations of physical systems are possible and which are impossible - i.e. in constructor-theoretic terms. Although it includes conjectured laws of physics that are directly about information, independently of the details of particular physical instantiations, it does not regard information as an a priori mathematical or logical concept, but as something whose nature and properties are determined by the laws of physics alone. It does not suffer from the circularity at the foundations of existing information theory (namely that information and distinguishability are each defined in terms of the other). It explains the relationship between classical and quantum information, and reveals the single, constructor-theoretic property underlying the most distinctive phenomena associated with the latter, including the lack of in-principle distinguishability of some states, the impossibility of cloning, the existence of pairs of variables that cannot simultaneously have sharp values, the fact that measurement processes can be both deterministic and unpredictable, the irreducible perturbation caused by measurement, and entanglement (locally inaccessible information).
Fast Rates for Maximum Entropy Exploration
We address the challenge of exploration in reinforcement learning (RL) when the agent operates in an unknown environment with sparse or no rewards. In this work, we study the maximum entropy exploration problem of two different types. The first type is visitation entropy maximization previously considered by Hazan et al.(2019) in the discounted setting. For this type of exploration, we propose a game-theoretic algorithm that has mathcal{O}(H^3S^2A/varepsilon^2) sample complexity thus improving the varepsilon-dependence upon existing results, where S is a number of states, A is a number of actions, H is an episode length, and varepsilon is a desired accuracy. The second type of entropy we study is the trajectory entropy. This objective function is closely related to the entropy-regularized MDPs, and we propose a simple algorithm that has a sample complexity of order mathcal{O}(poly(S,A,H)/varepsilon). Interestingly, it is the first theoretical result in RL literature that establishes the potential statistical advantage of regularized MDPs for exploration. Finally, we apply developed regularization techniques to reduce sample complexity of visitation entropy maximization to mathcal{O}(H^2SA/varepsilon^2), yielding a statistical separation between maximum entropy exploration and reward-free exploration.
Layer Collaboration in the Forward-Forward Algorithm
Backpropagation, which uses the chain rule, is the de-facto standard algorithm for optimizing neural networks nowadays. Recently, Hinton (2022) proposed the forward-forward algorithm, a promising alternative that optimizes neural nets layer-by-layer, without propagating gradients throughout the network. Although such an approach has several advantages over back-propagation and shows promising results, the fact that each layer is being trained independently limits the optimization process. Specifically, it prevents the network's layers from collaborating to learn complex and rich features. In this work, we study layer collaboration in the forward-forward algorithm. We show that the current version of the forward-forward algorithm is suboptimal when considering information flow in the network, resulting in a lack of collaboration between layers of the network. We propose an improved version that supports layer collaboration to better utilize the network structure, while not requiring any additional assumptions or computations. We empirically demonstrate the efficacy of the proposed version when considering both information flow and objective metrics. Additionally, we provide a theoretical motivation for the proposed method, inspired by functional entropy theory.
Zero-Shot Statistical Tests for LLM-Generated Text Detection using Finite Sample Concentration Inequalities
Verifying the provenance of content is crucial to the function of many organizations, e.g., educational institutions, social media platforms, firms, etc. This problem is becoming increasingly difficult as text generated by Large Language Models (LLMs) becomes almost indistinguishable from human-generated content. In addition, many institutions utilize in-house LLMs and want to ensure that external, non-sanctioned LLMs do not produce content within the institution. In this paper, we answer the following question: Given a piece of text, can we identify whether it was produced by LLM A or B (where B can be a human)? We model LLM-generated text as a sequential stochastic process with complete dependence on history and design zero-shot statistical tests to distinguish between (i) the text generated by two different sets of LLMs A (in-house) and B (non-sanctioned) and also (ii) LLM-generated and human-generated texts. We prove that the type I and type II errors for our tests decrease exponentially in the text length. In designing our tests, we derive concentration inequalities on the difference between log-perplexity and the average entropy of the string under A. Specifically, for a given string, we demonstrate that if the string is generated by A, the log-perplexity of the string under A converges to the average entropy of the string under A, except with an exponentially small probability in string length. We also show that if B generates the text, except with an exponentially small probability in string length, the log-perplexity of the string under A converges to the average cross-entropy of B and A. Lastly, we present preliminary experimental results to support our theoretical results. By enabling guaranteed (with high probability) finding of the origin of harmful LLM-generated text with arbitrary size, we can help combat misinformation.
The Geometry of Concepts: Sparse Autoencoder Feature Structure
Sparse autoencoders have recently produced dictionaries of high-dimensional vectors corresponding to the universe of concepts represented by large language models. We find that this concept universe has interesting structure at three levels: 1) The "atomic" small-scale structure contains "crystals" whose faces are parallelograms or trapezoids, generalizing well-known examples such as (man-woman-king-queen). We find that the quality of such parallelograms and associated function vectors improves greatly when projecting out global distractor directions such as word length, which is efficiently done with linear discriminant analysis. 2) The "brain" intermediate-scale structure has significant spatial modularity; for example, math and code features form a "lobe" akin to functional lobes seen in neural fMRI images. We quantify the spatial locality of these lobes with multiple metrics and find that clusters of co-occurring features, at coarse enough scale, also cluster together spatially far more than one would expect if feature geometry were random. 3) The "galaxy" scale large-scale structure of the feature point cloud is not isotropic, but instead has a power law of eigenvalues with steepest slope in middle layers. We also quantify how the clustering entropy depends on the layer.
To Compress or Not to Compress- Self-Supervised Learning and Information Theory: A Review
Deep neural networks have demonstrated remarkable performance in supervised learning tasks but require large amounts of labeled data. Self-supervised learning offers an alternative paradigm, enabling the model to learn from data without explicit labels. Information theory has been instrumental in understanding and optimizing deep neural networks. Specifically, the information bottleneck principle has been applied to optimize the trade-off between compression and relevant information preservation in supervised settings. However, the optimal information objective in self-supervised learning remains unclear. In this paper, we review various approaches to self-supervised learning from an information-theoretic standpoint and present a unified framework that formalizes the self-supervised information-theoretic learning problem. We integrate existing research into a coherent framework, examine recent self-supervised methods, and identify research opportunities and challenges. Moreover, we discuss empirical measurement of information-theoretic quantities and their estimators. This paper offers a comprehensive review of the intersection between information theory, self-supervised learning, and deep neural networks.
Deep learning probability flows and entropy production rates in active matter
Active matter systems, from self-propelled colloids to motile bacteria, are characterized by the conversion of free energy into useful work at the microscopic scale. These systems generically involve physics beyond the reach of equilibrium statistical mechanics, and a persistent challenge has been to understand the nature of their nonequilibrium states. The entropy production rate and the magnitude of the steady-state probability current provide quantitative ways to do so by measuring the breakdown of time-reversal symmetry and the strength of nonequilibrium transport of measure. Yet, their efficient computation has remained elusive, as they depend on the system's unknown and high-dimensional probability density. Here, building upon recent advances in generative modeling, we develop a deep learning framework that estimates the score of this density. We show that the score, together with the microscopic equations of motion, gives direct access to the entropy production rate, the probability current, and their decomposition into local contributions from individual particles, spatial regions, and degrees of freedom. To represent the score, we introduce a novel, spatially-local transformer-based network architecture that learns high-order interactions between particles while respecting their underlying permutation symmetry. We demonstrate the broad utility and scalability of the method by applying it to several high-dimensional systems of interacting active particles undergoing motility-induced phase separation (MIPS). We show that a single instance of our network trained on a system of 4096 particles at one packing fraction can generalize to other regions of the phase diagram, including systems with as many as 32768 particles. We use this observation to quantify the spatial structure of the departure from equilibrium in MIPS as a function of the number of particles and the packing fraction.
Fundamental limits of overparametrized shallow neural networks for supervised learning
We carry out an information-theoretical analysis of a two-layer neural network trained from input-output pairs generated by a teacher network with matching architecture, in overparametrized regimes. Our results come in the form of bounds relating i) the mutual information between training data and network weights, or ii) the Bayes-optimal generalization error, to the same quantities but for a simpler (generalized) linear model for which explicit expressions are rigorously known. Our bounds, which are expressed in terms of the number of training samples, input dimension and number of hidden units, thus yield fundamental performance limits for any neural network (and actually any learning procedure) trained from limited data generated according to our two-layer teacher neural network model. The proof relies on rigorous tools from spin glasses and is guided by ``Gaussian equivalence principles'' lying at the core of numerous recent analyses of neural networks. With respect to the existing literature, which is either non-rigorous or restricted to the case of the learning of the readout weights only, our results are information-theoretic (i.e. are not specific to any learning algorithm) and, importantly, cover a setting where all the network parameters are trained.
Intensional Inheritance Between Concepts: An Information-Theoretic Interpretation
This paper addresses the problem of formalizing and quantifying the concept of "intensional inheritance" between two concepts. We begin by conceiving the intensional inheritance of W from F as the amount of information the proposition "x is F " provides about the proposition "x is W. To flesh this out, we consider concepts F and W defined by sets of properties left{F_{1}, F_{2}, ldots, F_{n}right} and left{W_{1}, W_{2}, ldots, W_{m}right} with associated degrees left{d_{1}, d_{2}, ldots, d_{n}right} and left{e_{1}, e_{2}, ldots, e_{m}right}, respectively, where the properties may overlap. We then derive formulas for the intensional inheritance using both Shannon information theory and algorithmic information theory, incorporating interaction information among properties. We examine a special case where all properties are mutually exclusive and calculate the intensional inheritance in this case in both frameworks. We also derive expressions for P(W mid F) based on the mutual information formula. Finally we consider the relationship between intensional inheritance and conventional set-theoretic "extensional" inheritance, concluding that in our information-theoretic framework, extensional inheritance emerges as a special case of intensional inheritance.
Progress measures for grokking via mechanistic interpretability
Neural networks often exhibit emergent behavior, where qualitatively new capabilities arise from scaling up the amount of parameters, training data, or training steps. One approach to understanding emergence is to find continuous progress measures that underlie the seemingly discontinuous qualitative changes. We argue that progress measures can be found via mechanistic interpretability: reverse-engineering learned behaviors into their individual components. As a case study, we investigate the recently-discovered phenomenon of ``grokking'' exhibited by small transformers trained on modular addition tasks. We fully reverse engineer the algorithm learned by these networks, which uses discrete Fourier transforms and trigonometric identities to convert addition to rotation about a circle. We confirm the algorithm by analyzing the activations and weights and by performing ablations in Fourier space. Based on this understanding, we define progress measures that allow us to study the dynamics of training and split training into three continuous phases: memorization, circuit formation, and cleanup. Our results show that grokking, rather than being a sudden shift, arises from the gradual amplification of structured mechanisms encoded in the weights, followed by the later removal of memorizing components.
The Consciousness Prior
A new prior is proposed for learning representations of high-level concepts of the kind we manipulate with language. This prior can be combined with other priors in order to help disentangling abstract factors from each other. It is inspired by cognitive neuroscience theories of consciousness, seen as a bottleneck through which just a few elements, after having been selected by attention from a broader pool, are then broadcast and condition further processing, both in perception and decision-making. The set of recently selected elements one becomes aware of is seen as forming a low-dimensional conscious state. This conscious state is combining the few concepts constituting a conscious thought, i.e., what one is immediately conscious of at a particular moment. We claim that this architectural and information-processing constraint corresponds to assumptions about the joint distribution between high-level concepts. To the extent that these assumptions are generally true (and the form of natural language seems consistent with them), they can form a useful prior for representation learning. A low-dimensional thought or conscious state is analogous to a sentence: it involves only a few variables and yet can make a statement with very high probability of being true. This is consistent with a joint distribution (over high-level concepts) which has the form of a sparse factor graph, i.e., where the dependencies captured by each factor of the factor graph involve only very few variables while creating a strong dip in the overall energy function. The consciousness prior also makes it natural to map conscious states to natural language utterances or to express classical AI knowledge in a form similar to facts and rules, albeit capturing uncertainty as well as efficient search mechanisms implemented by attention mechanisms.
Knowledge is reward: Learning optimal exploration by predictive reward cashing
There is a strong link between the general concept of intelligence and the ability to collect and use information. The theory of Bayes-adaptive exploration offers an attractive optimality framework for training machines to perform complex information gathering tasks. However, the computational complexity of the resulting optimal control problem has limited the diffusion of the theory to mainstream deep AI research. In this paper we exploit the inherent mathematical structure of Bayes-adaptive problems in order to dramatically simplify the problem by making the reward structure denser while simultaneously decoupling the learning of exploitation and exploration policies. The key to this simplification comes from the novel concept of cross-value (i.e. the value of being in an environment while acting optimally according to another), which we use to quantify the value of currently available information. This results in a new denser reward structure that "cashes in" all future rewards that can be predicted from the current information state. In a set of experiments we show that the approach makes it possible to learn challenging information gathering tasks without the use of shaping and heuristic bonuses in situations where the standard RL algorithms fail.
Convergence of local times of stochastic processes associated with resistance forms
In this paper, it is shown that if a sequence of resistance metric spaces equipped with measures converges with respect to the local Gromov-Hausdorff-vague topology, and certain non-explosion and metric-entropy conditions are satisfied, then the associated stochastic processes and their local times also converge. The metric-entropy condition can be checked by applying volume estimates of balls. Whilst similar results have been proved previously, the approach of this article is more widely applicable. Indeed, we recover various known conclusions for scaling limits of some deterministic self-similar fractal graphs, critical Galton-Watson trees, the critical Erdos-R\'enyi random graph and the configuration model (in the latter two cases, we prove for the first time the convergence of the models with respect to the resistance metric and also, for the configuration model, we overcome an error in the existing proof of local time convergence). Moreover, we derive new ones for scaling limits of uniform spanning trees and random recursive fractals. The metric-entropy condition also implies convergence of associated Gaussian processes.
Chaos as an interpretable benchmark for forecasting and data-driven modelling
The striking fractal geometry of strange attractors underscores the generative nature of chaos: like probability distributions, chaotic systems can be repeatedly measured to produce arbitrarily-detailed information about the underlying attractor. Chaotic systems thus pose a unique challenge to modern statistical learning techniques, while retaining quantifiable mathematical properties that make them controllable and interpretable as benchmarks. Here, we present a growing database currently comprising 131 known chaotic dynamical systems spanning fields such as astrophysics, climatology, and biochemistry. Each system is paired with precomputed multivariate and univariate time series. Our dataset has comparable scale to existing static time series databases; however, our systems can be re-integrated to produce additional datasets of arbitrary length and granularity. Our dataset is annotated with known mathematical properties of each system, and we perform feature analysis to broadly categorize the diverse dynamics present across the collection. Chaotic systems inherently challenge forecasting models, and across extensive benchmarks we correlate forecasting performance with the degree of chaos present. We also exploit the unique generative properties of our dataset in several proof-of-concept experiments: surrogate transfer learning to improve time series classification, importance sampling to accelerate model training, and benchmarking symbolic regression algorithms.
Factorized Mutual Information Maximization
We investigate the sets of joint probability distributions that maximize the average multi-information over a collection of margins. These functionals serve as proxies for maximizing the multi-information of a set of variables or the mutual information of two subsets of variables, at a lower computation and estimation complexity. We describe the maximizers and their relations to the maximizers of the multi-information and the mutual information.
Reliable Measures of Spread in High Dimensional Latent Spaces
Understanding geometric properties of natural language processing models' latent spaces allows the manipulation of these properties for improved performance on downstream tasks. One such property is the amount of data spread in a model's latent space, or how fully the available latent space is being used. In this work, we define data spread and demonstrate that the commonly used measures of data spread, Average Cosine Similarity and a partition function min/max ratio I(V), do not provide reliable metrics to compare the use of latent space across models. We propose and examine eight alternative measures of data spread, all but one of which improve over these current metrics when applied to seven synthetic data distributions. Of our proposed measures, we recommend one principal component-based measure and one entropy-based measure that provide reliable, relative measures of spread and can be used to compare models of different sizes and dimensionalities.
On the Provable Advantage of Unsupervised Pretraining
Unsupervised pretraining, which learns a useful representation using a large amount of unlabeled data to facilitate the learning of downstream tasks, is a critical component of modern large-scale machine learning systems. Despite its tremendous empirical success, the rigorous theoretical understanding of why unsupervised pretraining generally helps remains rather limited -- most existing results are restricted to particular methods or approaches for unsupervised pretraining with specialized structural assumptions. This paper studies a generic framework, where the unsupervised representation learning task is specified by an abstract class of latent variable models Phi and the downstream task is specified by a class of prediction functions Psi. We consider a natural approach of using Maximum Likelihood Estimation (MLE) for unsupervised pretraining and Empirical Risk Minimization (ERM) for learning downstream tasks. We prove that, under a mild ''informative'' condition, our algorithm achieves an excess risk of mathcal{O}(mathcal{C_Phi/m} + mathcal{C_Psi/n}) for downstream tasks, where C_Phi, C_Psi are complexity measures of function classes Phi, Psi, and m, n are the number of unlabeled and labeled data respectively. Comparing to the baseline of mathcal{O}(mathcal{C_{Phi circ Psi}/n}) achieved by performing supervised learning using only the labeled data, our result rigorously shows the benefit of unsupervised pretraining when m gg n and C_{Phicirc Psi} > C_Psi. This paper further shows that our generic framework covers a wide range of approaches for unsupervised pretraining, including factor models, Gaussian mixture models, and contrastive learning.
Analysis on Riemann Hypothesis with Cross Entropy Optimization and Reasoning
In this paper, we present a novel framework for the analysis of Riemann Hypothesis [27], which is composed of three key components: a) probabilistic modeling with cross entropy optimization and reasoning; b) the application of the law of large numbers; c) the application of mathematical inductions. The analysis is mainly conducted by virtue of probabilistic modeling of cross entropy optimization and reasoning with rare event simulation techniques. The application of the law of large numbers [2, 3, 6] and the application of mathematical inductions make the analysis of Riemann Hypothesis self-contained and complete to make sure that the whole complex plane is covered as conjectured in Riemann Hypothesis. We also discuss the method of enhanced top-p sampling with large language models (LLMs) for reasoning, where next token prediction is not just based on the estimated probabilities of each possible token in the current round but also based on accumulated path probabilities among multiple top-k chain of thoughts (CoTs) paths. The probabilistic modeling of cross entropy optimization and reasoning may suit well with the analysis of Riemann Hypothesis as Riemann Zeta functions are inherently dealing with the sums of infinite components of a complex number series. We hope that our analysis in this paper could shed some light on some of the insights of Riemann Hypothesis. The framework and techniques presented in this paper, coupled with recent developments with chain of thought (CoT) or diagram of thought (DoT) reasoning in large language models (LLMs) with reinforcement learning (RL) [1, 7, 18, 21, 24, 34, 39-41], could pave the way for eventual proof of Riemann Hypothesis [27].
How Does Information Bottleneck Help Deep Learning?
Numerous deep learning algorithms have been inspired by and understood via the notion of information bottleneck, where unnecessary information is (often implicitly) minimized while task-relevant information is maximized. However, a rigorous argument for justifying why it is desirable to control information bottlenecks has been elusive. In this paper, we provide the first rigorous learning theory for justifying the benefit of information bottleneck in deep learning by mathematically relating information bottleneck to generalization errors. Our theory proves that controlling information bottleneck is one way to control generalization errors in deep learning, although it is not the only or necessary way. We investigate the merit of our new mathematical findings with experiments across a range of architectures and learning settings. In many cases, generalization errors are shown to correlate with the degree of information bottleneck: i.e., the amount of the unnecessary information at hidden layers. This paper provides a theoretical foundation for current and future methods through the lens of information bottleneck. Our new generalization bounds scale with the degree of information bottleneck, unlike the previous bounds that scale with the number of parameters, VC dimension, Rademacher complexity, stability or robustness. Our code is publicly available at: https://github.com/xu-ji/information-bottleneck
Who Wrote this Code? Watermarking for Code Generation
With the remarkable generation performance of large language models, ethical and legal concerns about using them have been raised, such as plagiarism and copyright issues. For such concerns, several approaches to watermark and detect LLM-generated text have been proposed very recently. However, we discover that the previous methods fail to function appropriately with code generation tasks because of the syntactic and semantic characteristics of code. Based on Kirchenbauer2023watermark, we propose a new watermarking method, Selective WatErmarking via Entropy Thresholding (SWEET), that promotes "green" tokens only at the position with high entropy of the token distribution during generation, thereby preserving the correctness of the generated code. The watermarked code is detected by the statistical test and Z-score based on the entropy information. Our experiments on HumanEval and MBPP show that SWEET significantly improves the Pareto Frontier between the code correctness and watermark detection performance. We also show that notable post-hoc detection methods (e.g. DetectGPT) fail to work well in this task. Finally, we show that setting a reasonable entropy threshold is not much of a challenge. Code is available at https://github.com/hongcheki/sweet-watermark.
MLE convergence speed to information projection of exponential family: Criterion for model dimension and sample size -- complete proof version--
For a parametric model of distributions, the closest distribution in the model to the true distribution located outside the model is considered. Measuring the closeness between two distributions with the Kullback-Leibler (K-L) divergence, the closest distribution is called the "information projection." The estimation risk of the maximum likelihood estimator (MLE) is defined as the expectation of K-L divergence between the information projection and the predictive distribution with plugged-in MLE. Here, the asymptotic expansion of the risk is derived up to n^{-2}-order, and the sufficient condition on the risk for the Bayes error rate between the true distribution and the information projection to be lower than a specified value is investigated. Combining these results, the "p-n criterion" is proposed, which determines whether the MLE is sufficiently close to the information projection for the given model and sample. In particular, the criterion for an exponential family model is relatively simple and can be used for a complex model with no explicit form of normalizing constant. This criterion can constitute a solution to the sample size or model acceptance problem. Use of the p-n criteria is demonstrated for two practical datasets. The relationship between the results and information criteria is also studied.
Dynamical properties of a small heterogeneous chain network of neurons in discrete time
We propose a novel nonlinear bidirectionally coupled heterogeneous chain network whose dynamics evolve in discrete time. The backbone of the model is a pair of popular map-based neuron models, the Chialvo and the Rulkov maps. This model is assumed to proximate the intricate dynamical properties of neurons in the widely complex nervous system. The model is first realized via various nonlinear analysis techniques: fixed point analysis, phase portraits, Jacobian matrix, and bifurcation diagrams. We observe the coexistence of chaotic and period-4 attractors. Various codimension-1 and -2 patterns for example saddle-node, period-doubling, Neimark-Sacker, double Neimark-Sacker, flip- and fold-Neimark Sacker, and 1:1 and 1:2 resonance are also explored. Furthermore, the study employs two synchronization measures to quantify how the oscillators in the network behave in tandem with each other over a long number of iterations. Finally, a time series analysis of the model is performed to investigate its complexity in terms of sample entropy.
Unified Conversational Recommendation Policy Learning via Graph-based Reinforcement Learning
Conversational recommender systems (CRS) enable the traditional recommender systems to explicitly acquire user preferences towards items and attributes through interactive conversations. Reinforcement learning (RL) is widely adopted to learn conversational recommendation policies to decide what attributes to ask, which items to recommend, and when to ask or recommend, at each conversation turn. However, existing methods mainly target at solving one or two of these three decision-making problems in CRS with separated conversation and recommendation components, which restrict the scalability and generality of CRS and fall short of preserving a stable training procedure. In the light of these challenges, we propose to formulate these three decision-making problems in CRS as a unified policy learning task. In order to systematically integrate conversation and recommendation components, we develop a dynamic weighted graph based RL method to learn a policy to select the action at each conversation turn, either asking an attribute or recommending items. Further, to deal with the sample efficiency issue, we propose two action selection strategies for reducing the candidate action space according to the preference and entropy information. Experimental results on two benchmark CRS datasets and a real-world E-Commerce application show that the proposed method not only significantly outperforms state-of-the-art methods but also enhances the scalability and stability of CRS.
Constructor Theory of Probability
Unitary quantum theory, having no Born Rule, is non-probabilistic. Hence the notorious problem of reconciling it with the unpredictability and appearance of stochasticity in quantum measurements. Generalising and improving upon the so-called 'decision-theoretic approach' (Deutsch, 1999; Wallace, 2003, 2007, 2012), I shall recast that problem in the recently proposed constructor theory of information - where quantum theory is represented as one of a class of superinformation theories, which are local, non-probabilistic theories conforming to certain constructor-theoretic conditions. I prove that the unpredictability of measurement outcomes (to which I give an exact meaning via constructor theory), necessarily arises in superinformation theories. Then I explain how the appearance of stochasticity in (finitely many) repeated measurements can arise under superinformation theories. And I establish sufficient conditions for a superinformation theory to inform decisions (made under it) as if it were probabilistic, via a Deutsch-Wallace-type argument - thus defining a class of decision-supporting superinformation theories. This broadens the domain of applicability of that argument to cover constructor-theory compliant theories. In addition, in this version some of the argument's assumptions, previously construed as merely decision-theoretic, follow from physical properties expressed by constructor-theoretic principles.
Constructor Theory of Thermodynamics
All current formulations of thermodynamics invoke some form of coarse-graining or ensembles as the supposed link between their own laws and the microscopic laws of motion. They deal only with ensemble-averages, expectation values, macroscopic limits, infinite heat baths, etc., not with the details of physical variables of individual microscopic systems. They are consistent with the laws of motion for finite systems only in certain approximations, which improve with increasing scale, given various assumptions about initial conditions which are neither specified precisely nor even thought to hold exactly in nature. Here I propose a new formulation of the zeroth, first and second laws, improving upon the axiomatic approach to thermodynamics (Carath\'eodory, 1909; Lieb & Yngvason, 1999), via the principles of the recently proposed constructor theory. Specifically, I provide a non-approximative, scale-independent formulation of 'adiabatic accessibility'; this in turn provides a non-approximative, scale-independent distinction between work and heat and reveals an unexpected connection between information theory and the first law of thermodynamics (not just the second). It also achieves the long-sought unification of the axiomatic approach with Kelvin's.
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
A central problem in machine learning involves modeling complex data-sets using highly flexible families of probability distributions in which learning, sampling, inference, and evaluation are still analytically or computationally tractable. Here, we develop an approach that simultaneously achieves both flexibility and tractability. The essential idea, inspired by non-equilibrium statistical physics, is to systematically and slowly destroy structure in a data distribution through an iterative forward diffusion process. We then learn a reverse diffusion process that restores structure in data, yielding a highly flexible and tractable generative model of the data. This approach allows us to rapidly learn, sample from, and evaluate probabilities in deep generative models with thousands of layers or time steps, as well as to compute conditional and posterior probabilities under the learned model. We additionally release an open source reference implementation of the algorithm.
Single-pass Adaptive Image Tokenization for Minimum Program Search
According to Algorithmic Information Theory (AIT) -- Intelligent representations compress data into the shortest possible program that can reconstruct its content, exhibiting low Kolmogorov Complexity (KC). In contrast, most visual representation learning systems use fixed-length representations for all inputs, ignoring variations in complexity or familiarity. Recent adaptive tokenization methods address this by allocating variable-length representations but typically require test-time search over multiple encodings to find the most predictive one. Inspired by Kolmogorov Complexity principles, we propose a single-pass adaptive tokenizer, KARL, which predicts the appropriate number of tokens for an image in a single forward pass, halting once its approximate KC is reached. The token count serves as a proxy for the minimum description length. KARL's training procedure closely resembles the Upside-Down Reinforcement Learning paradigm, as it learns to conditionally predict token halting based on a desired reconstruction quality. KARL matches the performance of recent adaptive tokenizers while operating in a single pass. We present scaling laws for KARL, analyzing the role of encoder/decoder size, continuous vs. discrete tokenization and more. Additionally, we offer a conceptual study drawing an analogy between Adaptive Image Tokenization and Algorithmic Information Theory, examining the predicted image complexity (KC) across axes such as structure vs. noise and in- vs. out-of-distribution familiarity -- revealing alignment with human intuition.
Compressing Tabular Data via Latent Variable Estimation
Data used for analytics and machine learning often take the form of tables with categorical entries. We introduce a family of lossless compression algorithms for such data that proceed in four steps: (i) Estimate latent variables associated to rows and columns; (ii) Partition the table in blocks according to the row/column latents; (iii) Apply a sequential (e.g. Lempel-Ziv) coder to each of the blocks; (iv) Append a compressed encoding of the latents. We evaluate it on several benchmark datasets, and study optimal compression in a probabilistic model for that tabular data, whereby latent values are independent and table entries are conditionally independent given the latent values. We prove that the model has a well defined entropy rate and satisfies an asymptotic equipartition property. We also prove that classical compression schemes such as Lempel-Ziv and finite-state encoders do not achieve this rate. On the other hand, the latent estimation strategy outlined above achieves the optimal rate.
Cauchy-Schwarz Divergence Information Bottleneck for Regression
The information bottleneck (IB) approach is popular to improve the generalization, robustness and explainability of deep neural networks. Essentially, it aims to find a minimum sufficient representation t by striking a trade-off between a compression term I(x;t) and a prediction term I(y;t), where I(cdot;cdot) refers to the mutual information (MI). MI is for the IB for the most part expressed in terms of the Kullback-Leibler (KL) divergence, which in the regression case corresponds to prediction based on mean squared error (MSE) loss with Gaussian assumption and compression approximated by variational inference. In this paper, we study the IB principle for the regression problem and develop a new way to parameterize the IB with deep neural networks by exploiting favorable properties of the Cauchy-Schwarz (CS) divergence. By doing so, we move away from MSE-based regression and ease estimation by avoiding variational approximations or distributional assumptions. We investigate the improved generalization ability of our proposed CS-IB and demonstrate strong adversarial robustness guarantees. We demonstrate its superior performance on six real-world regression tasks over other popular deep IB approaches. We additionally observe that the solutions discovered by CS-IB always achieve the best trade-off between prediction accuracy and compression ratio in the information plane. The code is available at https://github.com/SJYuCNEL/Cauchy-Schwarz-Information-Bottleneck.
Learning from Pseudo-Randomness With an Artificial Neural Network - Does God Play Pseudo-Dice?
Inspired by the fact that the neural network, as the mainstream for machine learning, has brought successes in many application areas, here we propose to use this approach for decoding hidden correlation among pseudo-random data and predicting events accordingly. With a simple neural network structure and a typical training procedure, we demonstrate the learning and prediction power of the neural network in extremely random environment. Finally, we postulate that the high sensitivity and efficiency of the neural network may allow to critically test if there could be any fundamental difference between quantum randomness and pseudo randomness, which is equivalent to the question: Does God play dice?
An Artificial Neuron Implemented on an Actual Quantum Processor
Artificial neural networks are the heart of machine learning algorithms and artificial intelligence protocols. Historically, the simplest implementation of an artificial neuron traces back to the classical Rosenblatt's `perceptron', but its long term practical applications may be hindered by the fast scaling up of computational complexity, especially relevant for the training of multilayered perceptron networks. Here we introduce a quantum information-based algorithm implementing the quantum computer version of a perceptron, which shows exponential advantage in encoding resources over alternative realizations. We experimentally test a few qubits version of this model on an actual small-scale quantum processor, which gives remarkably good answers against the expected results. We show that this quantum model of a perceptron can be used as an elementary nonlinear classifier of simple patterns, as a first step towards practical training of artificial quantum neural networks to be efficiently implemented on near-term quantum processing hardware.
Black holes and the loss landscape in machine learning
Understanding the loss landscape is an important problem in machine learning. One key feature of the loss function, common to many neural network architectures, is the presence of exponentially many low lying local minima. Physical systems with similar energy landscapes may provide useful insights. In this work, we point out that black holes naturally give rise to such landscapes, owing to the existence of black hole entropy. For definiteness, we consider 1/8 BPS black holes in N = 8 string theory. These provide an infinite family of potential landscapes arising in the microscopic descriptions of corresponding black holes. The counting of minima amounts to black hole microstate counting. Moreover, the exact numbers of the minima for these landscapes are a priori known from dualities in string theory. Some of the minima are connected by paths of low loss values, resembling mode connectivity. We estimate the number of runs needed to find all the solutions. Initial explorations suggest that Stochastic Gradient Descent can find a significant fraction of the minima.
Neural Networks Generalize on Low Complexity Data
We show that feedforward neural networks with ReLU activation generalize on low complexity data, suitably defined. Given i.i.d. data generated from a simple programming language, the minimum description length (MDL) feedforward neural network which interpolates the data generalizes with high probability. We define this simple programming language, along with a notion of description length of such networks. We provide several examples on basic computational tasks, such as checking primality of a natural number, and more. For primality testing, our theorem shows the following. Suppose that we draw an i.i.d. sample of Theta(N^{delta}ln N) numbers uniformly at random from 1 to N, where deltain (0,1). For each number x_i, let y_i = 1 if x_i is a prime and 0 if it is not. Then with high probability, the MDL network fitted to this data accurately answers whether a newly drawn number between 1 and N is a prime or not, with test error leq O(N^{-delta}). Note that the network is not designed to detect primes; minimum description learning discovers a network which does so.
Information Theoretic Evaluation of Privacy-Leakage, Interpretability, and Transferability for Trustworthy AI
In order to develop machine learning and deep learning models that take into account the guidelines and principles of trustworthy AI, a novel information theoretic trustworthy AI framework is introduced. A unified approach to "privacy-preserving interpretable and transferable learning" is considered for studying and optimizing the tradeoffs between privacy, interpretability, and transferability aspects. A variational membership-mapping Bayesian model is used for the analytical approximations of the defined information theoretic measures for privacy-leakage, interpretability, and transferability. The approach consists of approximating the information theoretic measures via maximizing a lower-bound using variational optimization. The study presents a unified information theoretic approach to study different aspects of trustworthy AI in a rigorous analytical manner. The approach is demonstrated through numerous experiments on benchmark datasets and a real-world biomedical application concerned with the detection of mental stress on individuals using heart rate variability analysis.
The Universality Lens: Why Even Highly Over-Parametrized Models Learn Well
A fundamental question in modern machine learning is why large, over-parameterized models, such as deep neural networks and transformers, tend to generalize well, even when their number of parameters far exceeds the number of training samples. We investigate this phenomenon through the lens of information theory, grounded in universal learning theory. Specifically, we study a Bayesian mixture learner with log-loss and (almost) uniform prior over an expansive hypothesis class. Our key result shows that the learner's regret is not determined by the overall size of the hypothesis class, but rather by the cumulative probability of all models that are close, in Kullback-Leibler divergence distance, to the true data-generating process. We refer to this cumulative probability as the weight of the hypothesis. This leads to a natural notion of model simplicity: simple models are those with large weight and thus require fewer samples to generalize, while complex models have small weight and need more data. This perspective provides a rigorous and intuitive explanation for why over-parameterized models often avoid overfitting: the presence of simple hypotheses allows the posterior to concentrate on them when supported by the data. We further bridge theory and practice by recalling that stochastic gradient descent with Langevin dynamics samples from the correct posterior distribution, enabling our theoretical learner to be approximated using standard machine learning methods combined with ensemble learning. Our analysis yields non-uniform regret bounds and aligns with key practical concepts such as flat minima and model distillation. The results apply broadly across online, batch, and supervised learning settings, offering a unified and principled understanding of the generalization behavior of modern AI systems.
Removing Biases from Molecular Representations via Information Maximization
High-throughput drug screening -- using cell imaging or gene expression measurements as readouts of drug effect -- is a critical tool in biotechnology to assess and understand the relationship between the chemical structure and biological activity of a drug. Since large-scale screens have to be divided into multiple experiments, a key difficulty is dealing with batch effects, which can introduce systematic errors and non-biological associations in the data. We propose InfoCORE, an Information maximization approach for COnfounder REmoval, to effectively deal with batch effects and obtain refined molecular representations. InfoCORE establishes a variational lower bound on the conditional mutual information of the latent representations given a batch identifier. It adaptively reweighs samples to equalize their implied batch distribution. Extensive experiments on drug screening data reveal InfoCORE's superior performance in a multitude of tasks including molecular property prediction and molecule-phenotype retrieval. Additionally, we show results for how InfoCORE offers a versatile framework and resolves general distribution shifts and issues of data fairness by minimizing correlation with spurious features or removing sensitive attributes. The code is available at https://github.com/uhlerlab/InfoCORE.
Towards Robust Fidelity for Evaluating Explainability of Graph Neural Networks
Graph Neural Networks (GNNs) are neural models that leverage the dependency structure in graphical data via message passing among the graph nodes. GNNs have emerged as pivotal architectures in analyzing graph-structured data, and their expansive application in sensitive domains requires a comprehensive understanding of their decision-making processes -- necessitating a framework for GNN explainability. An explanation function for GNNs takes a pre-trained GNN along with a graph as input, to produce a `sufficient statistic' subgraph with respect to the graph label. A main challenge in studying GNN explainability is to provide fidelity measures that evaluate the performance of these explanation functions. This paper studies this foundational challenge, spotlighting the inherent limitations of prevailing fidelity metrics, including Fid_+, Fid_-, and Fid_Delta. Specifically, a formal, information-theoretic definition of explainability is introduced and it is shown that existing metrics often fail to align with this definition across various statistical scenarios. The reason is due to potential distribution shifts when subgraphs are removed in computing these fidelity measures. Subsequently, a robust class of fidelity measures are introduced, and it is shown analytically that they are resilient to distribution shift issues and are applicable in a wide range of scenarios. Extensive empirical analysis on both synthetic and real datasets are provided to illustrate that the proposed metrics are more coherent with gold standard metrics. The source code is available at https://trustai4s-lab.github.io/fidelity.
Panda: A pretrained forecast model for universal representation of chaotic dynamics
Chaotic systems are intrinsically sensitive to small errors, challenging efforts to construct predictive data-driven models of real-world dynamical systems such as fluid flows or neuronal activity. Prior efforts comprise either specialized models trained separately on individual time series, or foundation models trained on vast time series databases with little underlying dynamical structure. Motivated by dynamical systems theory, we present Panda, Patched Attention for Nonlinear DynAmics. We train Panda on a novel synthetic, extensible dataset of 2 times 10^4 chaotic dynamical systems that we discover using an evolutionary algorithm. Trained purely on simulated data, Panda exhibits emergent properties: zero-shot forecasting of unseen real world chaotic systems, and nonlinear resonance patterns in cross-channel attention heads. Despite having been trained only on low-dimensional ordinary differential equations, Panda spontaneously develops the ability to predict partial differential equations without retraining. We demonstrate a neural scaling law for differential equations, underscoring the potential of pretrained models for probing abstract mathematical domains like nonlinear dynamics.
Dimensional Complexity and Algorithmic Efficiency
This paper uses the concept of algorithmic efficiency to present a unified theory of intelligence. Intelligence is defined informally, formally, and computationally. We introduce the concept of Dimensional complexity in algorithmic efficiency and deduce that an optimally efficient algorithm has zero Time complexity, zero Space complexity, and an infinite Dimensional complexity. This algorithm is used to generate the number line.
On Information-Theoretic Measures of Predictive Uncertainty
Reliable estimation of predictive uncertainty is crucial for machine learning applications, particularly in high-stakes scenarios where hedging against risks is essential. Despite its significance, there is no universal agreement on how to best quantify predictive uncertainty. In this work, we revisit core concepts to propose a framework for information-theoretic measures of predictive uncertainty. Our proposed framework categorizes predictive uncertainty measures according to two factors: (I) The predicting model (II) The approximation of the true predictive distribution. Examining all possible combinations of these two factors, we derive a set of predictive uncertainty measures that includes both known and newly introduced ones. We extensively evaluate these measures across a broad set of tasks, identifying conditions under which certain measures excel. Our findings show the importance of aligning the choice of uncertainty measure with the predicting model on in-distribution (ID) data, the limitations of epistemic uncertainty measures for out-of-distribution (OOD) data, and that the disentanglement between measures varies substantially between ID and OOD data. Together, these insights provide a more comprehensive understanding of predictive uncertainty measures, revealing their implicit assumptions and relationships.
Robust Associative Memories Naturally Occuring From Recurrent Hebbian Networks Under Noise
The brain is a noisy system subject to energy constraints. These facts are rarely taken into account when modelling artificial neural networks. In this paper, we are interested in demonstrating that those factors can actually lead to the appearance of robust associative memories. We first propose a simplified model of noise in the brain, taking into account synaptic noise and interference from neurons external to the network. When coarsely quantized, we show that this noise can be reduced to insertions and erasures. We take a neural network with recurrent modifiable connections, and subject it to noisy external inputs. We introduce an energy usage limitation principle in the network as well as consolidated Hebbian learning, resulting in an incremental processing of inputs. We show that the connections naturally formed correspond to state-of-the-art binary sparse associative memories.
On Mutual Information Maximization for Representation Learning
Many recent methods for unsupervised or self-supervised representation learning train feature extractors by maximizing an estimate of the mutual information (MI) between different views of the data. This comes with several immediate problems: For example, MI is notoriously hard to estimate, and using it as an objective for representation learning may lead to highly entangled representations due to its invariance under arbitrary invertible transformations. Nevertheless, these methods have been repeatedly shown to excel in practice. In this paper we argue, and provide empirical evidence, that the success of these methods cannot be attributed to the properties of MI alone, and that they strongly depend on the inductive bias in both the choice of feature extractor architectures and the parametrization of the employed MI estimators. Finally, we establish a connection to deep metric learning and argue that this interpretation may be a plausible explanation for the success of the recently introduced methods.
Neural networks behave as hash encoders: An empirical study
The input space of a neural network with ReLU-like activations is partitioned into multiple linear regions, each corresponding to a specific activation pattern of the included ReLU-like activations. We demonstrate that this partition exhibits the following encoding properties across a variety of deep learning models: (1) {\it determinism}: almost every linear region contains at most one training example. We can therefore represent almost every training example by a unique activation pattern, which is parameterized by a {\it neural code}; and (2) {\it categorization}: according to the neural code, simple algorithms, such as K-Means, K-NN, and logistic regression, can achieve fairly good performance on both training and test data. These encoding properties surprisingly suggest that {\it normal neural networks well-trained for classification behave as hash encoders without any extra efforts.} In addition, the encoding properties exhibit variability in different scenarios. {Further experiments demonstrate that {\it model size}, {\it training time}, {\it training sample size}, {\it regularization}, and {\it label noise} contribute in shaping the encoding properties, while the impacts of the first three are dominant.} We then define an {\it activation hash phase chart} to represent the space expanded by {model size}, training time, training sample size, and the encoding properties, which is divided into three canonical regions: {\it under-expressive regime}, {\it critically-expressive regime}, and {\it sufficiently-expressive regime}. The source code package is available at https://github.com/LeavesLei/activation-code.
An Information Bottleneck Perspective for Effective Noise Filtering on Retrieval-Augmented Generation
Retrieval-augmented generation integrates the capabilities of large language models with relevant information retrieved from an extensive corpus, yet encounters challenges when confronted with real-world noisy data. One recent solution is to train a filter module to find relevant content but only achieve suboptimal noise compression. In this paper, we propose to introduce the information bottleneck theory into retrieval-augmented generation. Our approach involves the filtration of noise by simultaneously maximizing the mutual information between compression and ground output, while minimizing the mutual information between compression and retrieved passage. In addition, we derive the formula of information bottleneck to facilitate its application in novel comprehensive evaluations, the selection of supervised fine-tuning data, and the construction of reinforcement learning rewards. Experimental results demonstrate that our approach achieves significant improvements across various question answering datasets, not only in terms of the correctness of answer generation but also in the conciseness with 2.5% compression rate.
Arrows of Time for Large Language Models
We study the probabilistic modeling performed by Autoregressive Large Language Models (LLMs) through the angle of time directionality, addressing a question first raised in (Shannon, 1951). For large enough models, we empirically find a time asymmetry in their ability to learn natural language: a difference in the average log-perplexity when trying to predict the next token versus when trying to predict the previous one. This difference is at the same time subtle and very consistent across various modalities (language, model size, training time, ...). Theoretically, this is surprising: from an information-theoretic point of view, there should be no such difference. We provide a theoretical framework to explain how such an asymmetry can appear from sparsity and computational complexity considerations, and outline a number of perspectives opened by our results.
Latent Representation and Simulation of Markov Processes via Time-Lagged Information Bottleneck
Markov processes are widely used mathematical models for describing dynamic systems in various fields. However, accurately simulating large-scale systems at long time scales is computationally expensive due to the short time steps required for accurate integration. In this paper, we introduce an inference process that maps complex systems into a simplified representational space and models large jumps in time. To achieve this, we propose Time-lagged Information Bottleneck (T-IB), a principled objective rooted in information theory, which aims to capture relevant temporal features while discarding high-frequency information to simplify the simulation task and minimize the inference error. Our experiments demonstrate that T-IB learns information-optimal representations for accurately modeling the statistical properties and dynamics of the original process at a selected time lag, outperforming existing time-lagged dimensionality reduction methods.
Exploring Neuron Interactions and Emergence in LLMs: From the Multifractal Analysis Perspective
Prior studies on the emergence in large models have primarily focused on how the functional capabilities of large language models (LLMs) scale with model size. Our research, however, transcends this traditional paradigm, aiming to deepen our understanding of the emergence within LLMs by placing a special emphasis not just on the model size but more significantly on the complex behavior of neuron interactions during the training process. By introducing the concepts of "self-organization" and "multifractal analysis," we explore how neuron interactions dynamically evolve during training, leading to "emergence," mirroring the phenomenon in natural systems where simple micro-level interactions give rise to complex macro-level behaviors. To quantitatively analyze the continuously evolving interactions among neurons in large models during training, we propose the Neuron-based Multifractal Analysis (NeuroMFA). Utilizing NeuroMFA, we conduct a comprehensive examination of the emergent behavior in LLMs through the lens of both model size and training process, paving new avenues for research into the emergence in large models.
PECCARY: A novel approach for characterizing orbital complexity, stochasticity, and regularity
Permutation Entropy and statistiCal Complexity Analysis for astRophYsics (PECCARY) is a computationally inexpensive, statistical method by which any time-series can be characterized as predominantly regular, complex, or stochastic. Elements of the PECCARY method have been used in a variety of physical, biological, economic, and mathematical scenarios, but have not yet gained traction in the astrophysical community. This study introduces the PECCARY technique with the specific aims to motivate its use in and optimize it for the analysis of astrophysical orbital systems. PECCARY works by decomposing a time-dependent measure, such as the x-coordinate or orbital angular momentum time-series, into ordinal patterns. Due to its unique approach and statistical nature, PECCARY is well-suited for detecting preferred and forbidden patterns (a signature of chaos), even when the chaotic behavior is short-lived or when working with a relatively short duration time-series or small sets of time-series data. A variety of examples are used to demonstrate the capabilities of PECCARY. These include mathematical examples (sine waves, varieties of noise, sums of sine waves, well-known chaotic functions), a double pendulum system, and astrophysical tracer particle simulations with potentials of varying intricacies. Since the adopted timescale used to diagnose a given time-series can affect the outcome, a method is presented to identify an ideal sampling scheme, constrained by the overall duration and the natural timescale of the system. The accompanying PECCARY Python package and its usage are discussed.
On Learning Markov Chains
The problem of estimating an unknown discrete distribution from its samples is a fundamental tenet of statistical learning. Over the past decade, it attracted significant research effort and has been solved for a variety of divergence measures. Surprisingly, an equally important problem, estimating an unknown Markov chain from its samples, is still far from understood. We consider two problems related to the min-max risk (expected loss) of estimating an unknown k-state Markov chain from its n sequential samples: predicting the conditional distribution of the next sample with respect to the KL-divergence, and estimating the transition matrix with respect to a natural loss induced by KL or a more general f-divergence measure. For the first measure, we determine the min-max prediction risk to within a linear factor in the alphabet size, showing it is Omega(kloglog n / n) and O(k^2loglog n / n). For the second, if the transition probabilities can be arbitrarily small, then only trivial uniform risk upper bounds can be derived. We therefore consider transition probabilities that are bounded away from zero, and resolve the problem for essentially all sufficiently smooth f-divergences, including KL-, L_2-, Chi-squared, Hellinger, and Alpha-divergences.
Universal Neurons in GPT2 Language Models
A basic question within the emerging field of mechanistic interpretability is the degree to which neural networks learn the same underlying mechanisms. In other words, are neural mechanisms universal across different models? In this work, we study the universality of individual neurons across GPT2 models trained from different initial random seeds, motivated by the hypothesis that universal neurons are likely to be interpretable. In particular, we compute pairwise correlations of neuron activations over 100 million tokens for every neuron pair across five different seeds and find that 1-5\% of neurons are universal, that is, pairs of neurons which consistently activate on the same inputs. We then study these universal neurons in detail, finding that they usually have clear interpretations and taxonomize them into a small number of neuron families. We conclude by studying patterns in neuron weights to establish several universal functional roles of neurons in simple circuits: deactivating attention heads, changing the entropy of the next token distribution, and predicting the next token to (not) be within a particular set.
BoxingGym: Benchmarking Progress in Automated Experimental Design and Model Discovery
Understanding the world and explaining it with scientific theories is a central aspiration of artificial intelligence research. Proposing theories, designing experiments to test them, and then revising them based on data are fundamental to scientific discovery. Despite the significant promise of LLM-based scientific agents, no benchmarks systematically test LLM's ability to propose scientific models, collect experimental data, and revise them in light of new data. We introduce BoxingGym, a benchmark with 10 environments for systematically evaluating both experimental design (e.g. collecting data to test a scientific theory) and model discovery (e.g. proposing and revising scientific theories). To enable tractable and quantitative evaluation, we implement each environment as a generative probabilistic model with which a scientific agent can run interactive experiments. These probabilistic models are drawn from various real-world scientific domains ranging from psychology to ecology. To quantitatively evaluate a scientific agent's ability to collect informative experimental data, we compute the expected information gain (EIG), an information-theoretic quantity which measures how much an experiment reduces uncertainty about the parameters of a generative model. A good scientific theory is a concise and predictive explanation. Therefore, to quantitatively evaluate model discovery, we ask a scientific agent to explain their model and then assess whether this explanation enables another scientific agent to make reliable predictions about this environment. In addition to this explanation-based evaluation, we compute standard model evaluation metrics such as prediction errors. We find that current LLMs, such as GPT-4o, struggle with both experimental design and model discovery. We find that augmenting the LLM-based agent with an explicit statistical model does not reliably improve these results.
What type of inference is planning?
Multiple types of inference are available for probabilistic graphical models, e.g., marginal, maximum-a-posteriori, and even marginal maximum-a-posteriori. Which one do researchers mean when they talk about ``planning as inference''? There is no consistency in the literature, different types are used, and their ability to do planning is further entangled with specific approximations or additional constraints. In this work we use the variational framework to show that, just like all commonly used types of inference correspond to different weightings of the entropy terms in the variational problem, planning corresponds exactly to a different set of weights. This means that all the tricks of variational inference are readily applicable to planning. We develop an analogue of loopy belief propagation that allows us to perform approximate planning in factored-state Markov decisions processes without incurring intractability due to the exponentially large state space. The variational perspective shows that the previous types of inference for planning are only adequate in environments with low stochasticity, and allows us to characterize each type by its own merits, disentangling the type of inference from the additional approximations that its practical use requires. We validate these results empirically on synthetic MDPs and tasks posed in the International Planning Competition.
Opening the Black Box of Deep Neural Networks via Information
Despite their great success, there is still no comprehensive theoretical understanding of learning with Deep Neural Networks (DNNs) or their inner organization. Previous work proposed to analyze DNNs in the Information Plane; i.e., the plane of the Mutual Information values that each layer preserves on the input and output variables. They suggested that the goal of the network is to optimize the Information Bottleneck (IB) tradeoff between compression and prediction, successively, for each layer. In this work we follow up on this idea and demonstrate the effectiveness of the Information-Plane visualization of DNNs. Our main results are: (i) most of the training epochs in standard DL are spent on {\emph compression} of the input to efficient representation and not on fitting the training labels. (ii) The representation compression phase begins when the training errors becomes small and the Stochastic Gradient Decent (SGD) epochs change from a fast drift to smaller training error into a stochastic relaxation, or random diffusion, constrained by the training error value. (iii) The converged layers lie on or very close to the Information Bottleneck (IB) theoretical bound, and the maps from the input to any hidden layer and from this hidden layer to the output satisfy the IB self-consistent equations. This generalization through noise mechanism is unique to Deep Neural Networks and absent in one layer networks. (iv) The training time is dramatically reduced when adding more hidden layers. Thus the main advantage of the hidden layers is computational. This can be explained by the reduced relaxation time, as this it scales super-linearly (exponentially for simple diffusion) with the information compression from the previous layer.
Deep ReLU Networks Preserve Expected Length
Assessing the complexity of functions computed by a neural network helps us understand how the network will learn and generalize. One natural measure of complexity is how the network distorts length - if the network takes a unit-length curve as input, what is the length of the resulting curve of outputs? It has been widely believed that this length grows exponentially in network depth. We prove that in fact this is not the case: the expected length distortion does not grow with depth, and indeed shrinks slightly, for ReLU networks with standard random initialization. We also generalize this result by proving upper bounds both for higher moments of the length distortion and for the distortion of higher-dimensional volumes. These theoretical results are corroborated by our experiments.
Algorithms for the Markov Entropy Decomposition
The Markov entropy decomposition (MED) is a recently-proposed, cluster-based simulation method for finite temperature quantum systems with arbitrary geometry. In this paper, we detail numerical algorithms for performing the required steps of the MED, principally solving a minimization problem with a preconditioned Newton's algorithm, as well as how to extract global susceptibilities and thermal responses. We demonstrate the power of the method with the spin-1/2 XXZ model on the 2D square lattice, including the extraction of critical points and details of each phase. Although the method shares some qualitative similarities with exact-diagonalization, we show the MED is both more accurate and significantly more flexible.
Key-value memory in the brain
Classical models of memory in psychology and neuroscience rely on similarity-based retrieval of stored patterns, where similarity is a function of retrieval cues and the stored patterns. While parsimonious, these models do not allow distinct representations for storage and retrieval, despite their distinct computational demands. Key-value memory systems, in contrast, distinguish representations used for storage (values) and those used for retrieval (keys). This allows key-value memory systems to optimize simultaneously for fidelity in storage and discriminability in retrieval. We review the computational foundations of key-value memory, its role in modern machine learning systems, related ideas from psychology and neuroscience, applications to a number of empirical puzzles, and possible biological implementations.
Tight Rates in Supervised Outlier Transfer Learning
A critical barrier to learning an accurate decision rule for outlier detection is the scarcity of outlier data. As such, practitioners often turn to the use of similar but imperfect outlier data from which they might transfer information to the target outlier detection task. Despite the recent empirical success of transfer learning approaches in outlier detection, a fundamental understanding of when and how knowledge can be transferred from a source to a target outlier detection task remains elusive. In this work, we adopt the traditional framework of Neyman-Pearson classification -- which formalizes supervised outlier detection -- with the added assumption that one has access to some related but imperfect outlier data. Our main results are as follows: We first determine the information-theoretic limits of the problem under a measure of discrepancy that extends some existing notions from traditional balanced classification; interestingly, unlike in balanced classification, seemingly very dissimilar sources can provide much information about a target, thus resulting in fast transfer. We then show that, in principle, these information-theoretic limits are achievable by adaptive procedures, i.e., procedures with no a priori information on the discrepancy between source and target outlier distributions.
Noisy dynamical systems evolve error correcting codes and modularity
Noise is a ubiquitous feature of the physical world. As a result, the first prerequisite of life is fault tolerance: maintaining integrity of state despite external bombardment. Recent experimental advances have revealed that biological systems achieve fault tolerance by implementing mathematically intricate error-correcting codes and by organizing in a modular fashion that physically separates functionally distinct subsystems. These elaborate structures represent a vanishing volume in the massive genetic configuration space. How is it possible that the primitive process of evolution, by which all biological systems evolved, achieved such unusual results? In this work, through experiments in Boolean networks, we show that the simultaneous presence of error correction and modularity in biological systems is no coincidence. Rather, it is a typical co-occurrence in noisy dynamic systems undergoing evolution. From this, we deduce the principle of error correction enhanced evolvability: systems possessing error-correcting codes are more effectively improved by evolution than those without.
Five open problems in quantum information
We identify five selected open problems in the theory of quantum information, which are rather simple to formulate, were well-studied in the literature, but are technically not easy. As these problems enjoy diverse mathematical connections, they offer a huge breakthrough potential. The first four concern existence of certain objects relevant for quantum information, namely a family of symmetric informationally complete generalized measurements in an infinite sequence of dimensions, mutually unbiased bases in dimension six, absolutely maximally entangled states for four subsystems with six levels each and bound entangled states with negative partial transpose. The fifth problem requires checking whether a certain state of a two-ququart system is 2-copy distillable. An award for solving each of them is announced.
Improving Pre-Trained Self-Supervised Embeddings Through Effective Entropy Maximization
A number of different architectures and loss functions have been applied to the problem of self-supervised learning (SSL), with the goal of developing embeddings that provide the best possible pre-training for as-yet-unknown, lightly supervised downstream tasks. One of these SSL criteria is to maximize the entropy of a set of embeddings in some compact space. But the goal of maximizing the embedding entropy often depends--whether explicitly or implicitly--upon high dimensional entropy estimates, which typically perform poorly in more than a few dimensions. In this paper, we motivate an effective entropy maximization criterion (E2MC), defined in terms of easy-to-estimate, low-dimensional constraints. We demonstrate that using it to continue training an already-trained SSL model for only a handful of epochs leads to a consistent and, in some cases, significant improvement in downstream performance. We perform careful ablation studies to show that the improved performance is due to the proposed add-on criterion. We also show that continued pre-training with alternative criteria does not lead to notable improvements, and in some cases, even degrades performance.
Towards Understanding Grokking: An Effective Theory of Representation Learning
We aim to understand grokking, a phenomenon where models generalize long after overfitting their training set. We present both a microscopic analysis anchored by an effective theory and a macroscopic analysis of phase diagrams describing learning performance across hyperparameters. We find that generalization originates from structured representations whose training dynamics and dependence on training set size can be predicted by our effective theory in a toy setting. We observe empirically the presence of four learning phases: comprehension, grokking, memorization, and confusion. We find representation learning to occur only in a "Goldilocks zone" (including comprehension and grokking) between memorization and confusion. We find on transformers the grokking phase stays closer to the memorization phase (compared to the comprehension phase), leading to delayed generalization. The Goldilocks phase is reminiscent of "intelligence from starvation" in Darwinian evolution, where resource limitations drive discovery of more efficient solutions. This study not only provides intuitive explanations of the origin of grokking, but also highlights the usefulness of physics-inspired tools, e.g., effective theories and phase diagrams, for understanding deep learning.
A Neural Scaling Law from Lottery Ticket Ensembling
Neural scaling laws (NSL) refer to the phenomenon where model performance improves with scale. Sharma & Kaplan analyzed NSL using approximation theory and predict that MSE losses decay as N^{-alpha}, alpha=4/d, where N is the number of model parameters, and d is the intrinsic input dimension. Although their theory works well for some cases (e.g., ReLU networks), we surprisingly find that a simple 1D problem y=x^2 manifests a different scaling law (alpha=1) from their predictions (alpha=4). We opened the neural networks and found that the new scaling law originates from lottery ticket ensembling: a wider network on average has more "lottery tickets", which are ensembled to reduce the variance of outputs. We support the ensembling mechanism by mechanistically interpreting single neural networks, as well as studying them statistically. We attribute the N^{-1} scaling law to the "central limit theorem" of lottery tickets. Finally, we discuss its potential implications for large language models and statistical physics-type theories of learning.
Leave-one-out Distinguishability in Machine Learning
We introduce a new analytical framework to quantify the changes in a machine learning algorithm's output distribution following the inclusion of a few data points in its training set, a notion we define as leave-one-out distinguishability (LOOD). This problem is key to measuring data **memorization** and **information leakage** in machine learning, and the **influence** of training data points on model predictions. We illustrate how our method broadens and refines existing empirical measures of memorization and privacy risks associated with training data. We use Gaussian processes to model the randomness of machine learning algorithms, and validate LOOD with extensive empirical analysis of information leakage using membership inference attacks. Our theoretical framework enables us to investigate the causes of information leakage and where the leakage is high. For example, we analyze the influence of activation functions, on data memorization. Additionally, our method allows us to optimize queries that disclose the most significant information about the training data in the leave-one-out setting. We illustrate how optimal queries can be used for accurate **reconstruction** of training data.
The Unbearable Slowness of Being: Why do we live at 10 bits/s?
This article is about the neural conundrum behind the slowness of human behavior. The information throughput of a human being is about 10 bits/s. In comparison, our sensory systems gather data at ~10^9 bits/s. The stark contrast between these numbers remains unexplained and touches on fundamental aspects of brain function: What neural substrate sets this speed limit on the pace of our existence? Why does the brain need billions of neurons to process 10 bits/s? Why can we only think about one thing at a time? The brain seems to operate in two distinct modes: the "outer" brain handles fast high-dimensional sensory and motor signals, whereas the "inner" brain processes the reduced few bits needed to control behavior. Plausible explanations exist for the large neuron numbers in the outer brain, but not for the inner brain, and we propose new research directions to remedy this.
Intriguing Properties of Adversarial Examples
It is becoming increasingly clear that many machine learning classifiers are vulnerable to adversarial examples. In attempting to explain the origin of adversarial examples, previous studies have typically focused on the fact that neural networks operate on high dimensional data, they overfit, or they are too linear. Here we argue that the origin of adversarial examples is primarily due to an inherent uncertainty that neural networks have about their predictions. We show that the functional form of this uncertainty is independent of architecture, dataset, and training protocol; and depends only on the statistics of the logit differences of the network, which do not change significantly during training. This leads to adversarial error having a universal scaling, as a power-law, with respect to the size of the adversarial perturbation. We show that this universality holds for a broad range of datasets (MNIST, CIFAR10, ImageNet, and random data), models (including state-of-the-art deep networks, linear models, adversarially trained networks, and networks trained on randomly shuffled labels), and attacks (FGSM, step l.l., PGD). Motivated by these results, we study the effects of reducing prediction entropy on adversarial robustness. Finally, we study the effect of network architectures on adversarial sensitivity. To do this, we use neural architecture search with reinforcement learning to find adversarially robust architectures on CIFAR10. Our resulting architecture is more robust to white and black box attacks compared to previous attempts.
Revisiting Bi-Linear State Transitions in Recurrent Neural Networks
The role of hidden units in recurrent neural networks is typically seen as modeling memory, with research focusing on enhancing information retention through gating mechanisms. A less explored perspective views hidden units as active participants in the computation performed by the network, rather than passive memory stores. In this work, we revisit bi-linear operations, which involve multiplicative interactions between hidden units and input embeddings. We demonstrate theoretically and empirically that they constitute a natural inductive bias for representing the evolution of hidden states in state tracking tasks. These are the simplest type of task that require hidden units to actively contribute to the behavior of the network. We also show that bi-linear state updates form a natural hierarchy corresponding to state tracking tasks of increasing complexity, with popular linear recurrent networks such as Mamba residing at the lowest-complexity center of that hierarchy.
Denoised MDPs: Learning World Models Better Than the World Itself
The ability to separate signal from noise, and reason with clean abstractions, is critical to intelligence. With this ability, humans can efficiently perform real world tasks without considering all possible nuisance factors.How can artificial agents do the same? What kind of information can agents safely discard as noises? In this work, we categorize information out in the wild into four types based on controllability and relation with reward, and formulate useful information as that which is both controllable and reward-relevant. This framework clarifies the kinds information removed by various prior work on representation learning in reinforcement learning (RL), and leads to our proposed approach of learning a Denoised MDP that explicitly factors out certain noise distractors. Extensive experiments on variants of DeepMind Control Suite and RoboDesk demonstrate superior performance of our denoised world model over using raw observations alone, and over prior works, across policy optimization control tasks as well as the non-control task of joint position regression.
Intelligence at the Edge of Chaos
We explore the emergence of intelligent behavior in artificial systems by investigating how the complexity of rule-based systems influences the capabilities of models trained to predict these rules. Our study focuses on elementary cellular automata (ECA), simple yet powerful one-dimensional systems that generate behaviors ranging from trivial to highly complex. By training distinct Large Language Models (LLMs) on different ECAs, we evaluated the relationship between the complexity of the rules' behavior and the intelligence exhibited by the LLMs, as reflected in their performance on downstream tasks. Our findings reveal that rules with higher complexity lead to models exhibiting greater intelligence, as demonstrated by their performance on reasoning and chess move prediction tasks. Both uniform and periodic systems, and often also highly chaotic systems, resulted in poorer downstream performance, highlighting a sweet spot of complexity conducive to intelligence. We conjecture that intelligence arises from the ability to predict complexity and that creating intelligence may require only exposure to complexity.
Imitation-regularized Optimal Transport on Networks: Provable Robustness and Application to Logistics Planning
Network systems form the foundation of modern society, playing a critical role in various applications. However, these systems are at significant risk of being adversely affected by unforeseen circumstances, such as disasters. Considering this, there is a pressing need for research to enhance the robustness of network systems. Recently, in reinforcement learning, the relationship between acquiring robustness and regularizing entropy has been identified. Additionally, imitation learning is used within this framework to reflect experts' behavior. However, there are no comprehensive studies on the use of a similar imitation framework for optimal transport on networks. Therefore, in this study, imitation-regularized optimal transport (I-OT) on networks was investigated. It encodes prior knowledge on the network by imitating a given prior distribution. The I-OT solution demonstrated robustness in terms of the cost defined on the network. Moreover, we applied the I-OT to a logistics planning problem using real data. We also examined the imitation and apriori risk information scenarios to demonstrate the usefulness and implications of the proposed method.
On Relation-Specific Neurons in Large Language Models
In large language models (LLMs), certain neurons can store distinct pieces of knowledge learned during pretraining. While knowledge typically appears as a combination of relations and entities, it remains unclear whether some neurons focus on a relation itself -- independent of any entity. We hypothesize such neurons detect a relation in the input text and guide generation involving such a relation. To investigate this, we study the Llama-2 family on a chosen set of relations with a statistics-based method. Our experiments demonstrate the existence of relation-specific neurons. We measure the effect of selectively deactivating candidate neurons specific to relation r on the LLM's ability to handle (1) facts whose relation is r and (2) facts whose relation is a different relation r' neq r. With respect to their capacity for encoding relation information, we give evidence for the following three properties of relation-specific neurons. (i) Neuron cumulativity. The neurons for r present a cumulative effect so that deactivating a larger portion of them results in the degradation of more facts in r. (ii) Neuron versatility. Neurons can be shared across multiple closely related as well as less related relations. Some relation neurons transfer across languages. (iii) Neuron interference. Deactivating neurons specific to one relation can improve LLM generation performance for facts of other relations. We will make our code publicly available at https://github.com/cisnlp/relation-specific-neurons.
On the Benefits of Biophysical Synapses
The approximation capability of ANNs and their RNN instantiations, is strongly correlated with the number of parameters packed into these networks. However, the complexity barrier for human understanding, is arguably related to the number of neurons and synapses in the networks, and to the associated nonlinear transformations. In this paper we show that the use of biophysical synapses, as found in LTCs, have two main benefits. First, they allow to pack more parameters for a given number of neurons and synapses. Second, they allow to formulate the nonlinear-network transformation, as a linear system with state-dependent coefficients. Both increase interpretability, as for a given task, they allow to learn a system linear in its input features, that is smaller in size compared to the state of the art. We substantiate the above claims on various time-series prediction tasks, but we believe that our results are applicable to any feedforward or recurrent ANN.
Minimizing Information Leakage under Padding Constraints
An attacker can gain information of a user by analyzing its network traffic. The size of transferred data leaks information about the file being transferred or the service being used, and this is particularly revealing when the attacker has background knowledge about the files or services available for transfer. To prevent this, servers may pad their files using a padding scheme, changing the file sizes and preventing anyone from guessing their identity uniquely. This work focuses on finding optimal padding schemes that keep a balance between privacy and the costs of bandwidth increase. We consider R\'enyi-min leakage as our main measure for privacy, since it is directly related with the success of a simple attacker, and compare our algorithms with an existing solution that minimizes Shannon leakage. We provide improvements to our algorithms in order to optimize average total padding and Shannon leakage while minimizing R\'enyi-min leakage. Moreover, our algorithms are designed to handle a more general and important scenario in which multiple servers wish to compute padding schemes in a way that protects the servers' identity in addition to the identity of the files.
Data Minimization at Inference Time
In domains with high stakes such as law, recruitment, and healthcare, learning models frequently rely on sensitive user data for inference, necessitating the complete set of features. This not only poses significant privacy risks for individuals but also demands substantial human effort from organizations to verify information accuracy. This paper asks whether it is necessary to use all input features for accurate predictions at inference time. The paper demonstrates that, in a personalized setting, individuals may only need to disclose a small subset of their features without compromising decision-making accuracy. The paper also provides an efficient sequential algorithm to determine the appropriate attributes for each individual to provide. Evaluations across various learning tasks show that individuals can potentially report as little as 10\% of their information while maintaining the same accuracy level as a model that employs the full set of user information.
Kaggle forecasting competitions: An overlooked learning opportunity
Competitions play an invaluable role in the field of forecasting, as exemplified through the recent M4 competition. The competition received attention from both academics and practitioners and sparked discussions around the representativeness of the data for business forecasting. Several competitions featuring real-life business forecasting tasks on the Kaggle platform has, however, been largely ignored by the academic community. We believe the learnings from these competitions have much to offer to the forecasting community and provide a review of the results from six Kaggle competitions. We find that most of the Kaggle datasets are characterized by higher intermittence and entropy than the M-competitions and that global ensemble models tend to outperform local single models. Furthermore, we find the strong performance of gradient boosted decision trees, increasing success of neural networks for forecasting, and a variety of techniques for adapting machine learning models to the forecasting task.
Folded context condensation in Path Integral formalism for infinite context transformers
This short note is written for rapid communication of long context training and to share the idea of how to train it with low memory usage. In the note, we generalize the attention algorithm and neural network of Generative Pre-Trained Transformers and reinterpret it in Path integral formalism. First, the role of the transformer is understood as the time evolution of the token state and second, it is suggested that the all key-token states in the same time as the query-token can attend to the attention with the query token states. As a result of the repetitive time evolution, it is discussed that the token states in the past sequence meats the token states in the present sequence so that the attention between separated sequences becomes possible for maintaining infinite contextual information just by using low memory for limited size of sequence. For the experiment, the 12 input token window size was taken and one GPU with 24GB memory was used for the pre-training. It was confirmed that more than 150 length context is preserved. The sampling result of the training, the code and the other details will be included in the revised version of this note later.
Stochastic Normalizing Flows
The sampling of probability distributions specified up to a normalization constant is an important problem in both machine learning and statistical mechanics. While classical stochastic sampling methods such as Markov Chain Monte Carlo (MCMC) or Langevin Dynamics (LD) can suffer from slow mixing times there is a growing interest in using normalizing flows in order to learn the transformation of a simple prior distribution to the given target distribution. Here we propose a generalized and combined approach to sample target densities: Stochastic Normalizing Flows (SNF) -- an arbitrary sequence of deterministic invertible functions and stochastic sampling blocks. We show that stochasticity overcomes expressivity limitations of normalizing flows resulting from the invertibility constraint, whereas trainable transformations between sampling steps improve efficiency of pure MCMC/LD along the flow. By invoking ideas from non-equilibrium statistical mechanics we derive an efficient training procedure by which both the sampler's and the flow's parameters can be optimized end-to-end, and by which we can compute exact importance weights without having to marginalize out the randomness of the stochastic blocks. We illustrate the representational power, sampling efficiency and asymptotic correctness of SNFs on several benchmarks including applications to sampling molecular systems in equilibrium.
Curiosity-Driven Exploration via Latent Bayesian Surprise
The human intrinsic desire to pursue knowledge, also known as curiosity, is considered essential in the process of skill acquisition. With the aid of artificial curiosity, we could equip current techniques for control, such as Reinforcement Learning, with more natural exploration capabilities. A promising approach in this respect has consisted of using Bayesian surprise on model parameters, i.e. a metric for the difference between prior and posterior beliefs, to favour exploration. In this contribution, we propose to apply Bayesian surprise in a latent space representing the agent's current understanding of the dynamics of the system, drastically reducing the computational costs. We extensively evaluate our method by measuring the agent's performance in terms of environment exploration, for continuous tasks, and looking at the game scores achieved, for video games. Our model is computationally cheap and compares positively with current state-of-the-art methods on several problems. We also investigate the effects caused by stochasticity in the environment, which is often a failure case for curiosity-driven agents. In this regime, the results suggest that our approach is resilient to stochastic transitions.
Internet-Augmented Dialogue Generation
The largest store of continually updating knowledge on our planet can be accessed via internet search. In this work we study giving access to this information to conversational agents. Large language models, even though they store an impressive amount of knowledge within their weights, are known to hallucinate facts when generating dialogue (Shuster et al., 2021); moreover, those facts are frozen in time at the point of model training. In contrast, we propose an approach that learns to generate an internet search query based on the context, and then conditions on the search results to finally generate a response, a method that can employ up-to-the-minute relevant information. We train and evaluate such models on a newly collected dataset of human-human conversations whereby one of the speakers is given access to internet search during knowledgedriven discussions in order to ground their responses. We find that search-query based access of the internet in conversation provides superior performance compared to existing approaches that either use no augmentation or FAISS-based retrieval (Lewis et al., 2020).
Examples of renormalization group transformations for image sets
Using the example of configurations generated with the worm algorithm for the two-dimensional Ising model, we propose renormalization group (RG) transformations, inspired by the tensor RG, that can be applied to sets of images. We relate criticality to the logarithmic divergence of the largest principal component. We discuss the changes in link occupation under the RG transformation, suggest ways to obtain data collapse, and compare with the two state tensor RG approximation near the fixed point.
A Data-Driven Measure of Relative Uncertainty for Misclassification Detection
Misclassification detection is an important problem in machine learning, as it allows for the identification of instances where the model's predictions are unreliable. However, conventional uncertainty measures such as Shannon entropy do not provide an effective way to infer the real uncertainty associated with the model's predictions. In this paper, we introduce a novel data-driven measure of uncertainty relative to an observer for misclassification detection. By learning patterns in the distribution of soft-predictions, our uncertainty measure can identify misclassified samples based on the predicted class probabilities. Interestingly, according to the proposed measure, soft-predictions corresponding to misclassified instances can carry a large amount of uncertainty, even though they may have low Shannon entropy. We demonstrate empirical improvements over multiple image classification tasks, outperforming state-of-the-art misclassification detection methods.
Control flow in active inference systems
Living systems face both environmental complexity and limited access to free-energy resources. Survival under these conditions requires a control system that can activate, or deploy, available perception and action resources in a context specific way. We show here that when systems are described as executing active inference driven by the free-energy principle (and hence can be considered Bayesian prediction-error minimizers), their control flow systems can always be represented as tensor networks (TNs). We show how TNs as control systems can be implmented within the general framework of quantum topological neural networks, and discuss the implications of these results for modeling biological systems at multiple scales.
TimeX++: Learning Time-Series Explanations with Information Bottleneck
Explaining deep learning models operating on time series data is crucial in various applications of interest which require interpretable and transparent insights from time series signals. In this work, we investigate this problem from an information theoretic perspective and show that most existing measures of explainability may suffer from trivial solutions and distributional shift issues. To address these issues, we introduce a simple yet practical objective function for time series explainable learning. The design of the objective function builds upon the principle of information bottleneck (IB), and modifies the IB objective function to avoid trivial solutions and distributional shift issues. We further present TimeX++, a novel explanation framework that leverages a parametric network to produce explanation-embedded instances that are both in-distributed and label-preserving. We evaluate TimeX++ on both synthetic and real-world datasets comparing its performance against leading baselines, and validate its practical efficacy through case studies in a real-world environmental application. Quantitative and qualitative evaluations show that TimeX++ outperforms baselines across all datasets, demonstrating a substantial improvement in explanation quality for time series data. The source code is available at https://github.com/zichuan-liu/TimeXplusplus.
Collective Dynamics from Stochastic Thermodynamics
From a viewpoint of stochastic thermodynamics, we derive equations that describe the collective dynamics near the order-disorder transition in the globally coupled XY model and near the synchronization-desynchronization transition in the Kuramoto model. A new way of thinking is to interpret the deterministic time evolution of a macroscopic variable as an external operation to a thermodynamic system. We then find that the irreversible work determines the equation for the collective dynamics. When analyzing the Kuramoto model, we employ a generalized concept of irreversible work which originates from a non-equilibrium identity associated with steady state thermodynamics.
Illuminating search spaces by mapping elites
Many fields use search algorithms, which automatically explore a search space to find high-performing solutions: chemists search through the space of molecules to discover new drugs; engineers search for stronger, cheaper, safer designs, scientists search for models that best explain data, etc. The goal of search algorithms has traditionally been to return the single highest-performing solution in a search space. Here we describe a new, fundamentally different type of algorithm that is more useful because it provides a holistic view of how high-performing solutions are distributed throughout a search space. It creates a map of high-performing solutions at each point in a space defined by dimensions of variation that a user gets to choose. This Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) algorithm illuminates search spaces, allowing researchers to understand how interesting attributes of solutions combine to affect performance, either positively or, equally of interest, negatively. For example, a drug company may wish to understand how performance changes as the size of molecules and their cost-to-produce vary. MAP-Elites produces a large diversity of high-performing, yet qualitatively different solutions, which can be more helpful than a single, high-performing solution. Interestingly, because MAP-Elites explores more of the search space, it also tends to find a better overall solution than state-of-the-art search algorithms. We demonstrate the benefits of this new algorithm in three different problem domains ranging from producing modular neural networks to designing simulated and real soft robots. Because MAP- Elites (1) illuminates the relationship between performance and dimensions of interest in solutions, (2) returns a set of high-performing, yet diverse solutions, and (3) improves finding a single, best solution, it will advance science and engineering.
MemGEN: Memory is All You Need
We propose a new learning paradigm called Deep Memory. It has the potential to completely revolutionize the Machine Learning field. Surprisingly, this paradigm has not been reinvented yet, unlike Deep Learning. At the core of this approach is the Learning By Heart principle, well studied in primary schools all over the world. Inspired by poem recitation, or by pi decimal memorization, we propose a concrete algorithm that mimics human behavior. We implement this paradigm on the task of generative modeling, and apply to images, natural language and even the pi decimals as long as one can print them as text. The proposed algorithm even generated this paper, in a one-shot learning setting. In carefully designed experiments, we show that the generated samples are indistinguishable from the training examples, as measured by any statistical tests or metrics.
Artificial Intelligence for EEG Prediction: Applied Chaos Theory
In the present research, we delve into the intricate realm of electroencephalogram (EEG) data analysis, focusing on sequence-to-sequence prediction of data across 32 EEG channels. The study harmoniously fuses the principles of applied chaos theory and dynamical systems theory to engender a novel feature set, enriching the representational capacity of our deep learning model. The endeavour's cornerstone is a transformer-based sequence-to-sequence architecture, calibrated meticulously to capture the non-linear and high-dimensional temporal dependencies inherent in EEG sequences. Through judicious architecture design, parameter initialisation strategies, and optimisation techniques, we have navigated the intricate balance between computational expediency and predictive performance. Our model stands as a vanguard in EEG data sequence prediction, demonstrating remarkable generalisability and robustness. The findings not only extend our understanding of EEG data dynamics but also unveil a potent analytical framework that can be adapted to diverse temporal sequence prediction tasks in neuroscience and beyond.
Parallel Learning by Multitasking Neural Networks
A modern challenge of Artificial Intelligence is learning multiple patterns at once (i.e.parallel learning). While this can not be accomplished by standard Hebbian associative neural networks, in this paper we show how the Multitasking Hebbian Network (a variation on theme of the Hopfield model working on sparse data-sets) is naturally able to perform this complex task. We focus on systems processing in parallel a finite (up to logarithmic growth in the size of the network) amount of patterns, mirroring the low-storage level of standard associative neural networks at work with pattern recognition. For mild dilution in the patterns, the network handles them hierarchically, distributing the amplitudes of their signals as power-laws w.r.t. their information content (hierarchical regime), while, for strong dilution, all the signals pertaining to all the patterns are raised with the same strength (parallel regime). Further, confined to the low-storage setting (i.e., far from the spin glass limit), the presence of a teacher neither alters the multitasking performances nor changes the thresholds for learning: the latter are the same whatever the training protocol is supervised or unsupervised. Results obtained through statistical mechanics, signal-to-noise technique and Monte Carlo simulations are overall in perfect agreement and carry interesting insights on multiple learning at once: for instance, whenever the cost-function of the model is minimized in parallel on several patterns (in its description via Statistical Mechanics), the same happens to the standard sum-squared error Loss function (typically used in Machine Learning).
Preserving Statistical Validity in Adaptive Data Analysis
A great deal of effort has been devoted to reducing the risk of spurious scientific discoveries, from the use of sophisticated validation techniques, to deep statistical methods for controlling the false discovery rate in multiple hypothesis testing. However, there is a fundamental disconnect between the theoretical results and the practice of data analysis: the theory of statistical inference assumes a fixed collection of hypotheses to be tested, or learning algorithms to be applied, selected non-adaptively before the data are gathered, whereas in practice data is shared and reused with hypotheses and new analyses being generated on the basis of data exploration and the outcomes of previous analyses. In this work we initiate a principled study of how to guarantee the validity of statistical inference in adaptive data analysis. As an instance of this problem, we propose and investigate the question of estimating the expectations of m adaptively chosen functions on an unknown distribution given n random samples. We show that, surprisingly, there is a way to estimate an exponential in n number of expectations accurately even if the functions are chosen adaptively. This gives an exponential improvement over standard empirical estimators that are limited to a linear number of estimates. Our result follows from a general technique that counter-intuitively involves actively perturbing and coordinating the estimates, using techniques developed for privacy preservation. We give additional applications of this technique to our question.
Can ChatGPT Compute Trustworthy Sentiment Scores from Bloomberg Market Wraps?
We used a dataset of daily Bloomberg Financial Market Summaries from 2010 to 2023, reposted on large financial media, to determine how global news headlines may affect stock market movements using ChatGPT and a two-stage prompt approach. We document a statistically significant positive correlation between the sentiment score and future equity market returns over short to medium term, which reverts to a negative correlation over longer horizons. Validation of this correlation pattern across multiple equity markets indicates its robustness across equity regions and resilience to non-linearity, evidenced by comparison of Pearson and Spearman correlations. Finally, we provide an estimate of the optimal horizon that strikes a balance between reactivity to new information and correlation.
Implementing An Artificial Quantum Perceptron
A Perceptron is a fundamental building block of a neural network. The flexibility and scalability of perceptron make it ubiquitous in building intelligent systems. Studies have shown the efficacy of a single neuron in making intelligent decisions. Here, we examined and compared two perceptrons with distinct mechanisms, and developed a quantum version of one of those perceptrons. As a part of this modeling, we implemented the quantum circuit for an artificial perception, generated a dataset, and simulated the training. Through these experiments, we show that there is an exponential growth advantage and test different qubit versions. Our findings show that this quantum model of an individual perceptron can be used as a pattern classifier. For the second type of model, we provide an understanding to design and simulate a spike-dependent quantum perceptron. Our code is available at https://github.com/ashutosh1919/quantum-perceptron
ERU-KG: Efficient Reference-aligned Unsupervised Keyphrase Generation
Unsupervised keyphrase prediction has gained growing interest in recent years. However, existing methods typically rely on heuristically defined importance scores, which may lead to inaccurate informativeness estimation. In addition, they lack consideration for time efficiency. To solve these problems, we propose ERU-KG, an unsupervised keyphrase generation (UKG) model that consists of an informativeness and a phraseness module. The former estimates the relevance of keyphrase candidates, while the latter generate those candidates. The informativeness module innovates by learning to model informativeness through references (e.g., queries, citation contexts, and titles) and at the term-level, thereby 1) capturing how the key concepts of documents are perceived in different contexts and 2) estimating informativeness of phrases more efficiently by aggregating term informativeness, removing the need for explicit modeling of the candidates. ERU-KG demonstrates its effectiveness on keyphrase generation benchmarks by outperforming unsupervised baselines and achieving on average 89\% of the performance of a supervised model for top 10 predictions. Additionally, to highlight its practical utility, we evaluate the model on text retrieval tasks and show that keyphrases generated by ERU-KG are effective when employed as query and document expansions. Furthermore, inference speed tests reveal that ERU-KG is the fastest among baselines of similar model sizes. Finally, our proposed model can switch between keyphrase generation and extraction by adjusting hyperparameters, catering to diverse application requirements.
Model scale versus domain knowledge in statistical forecasting of chaotic systems
Chaos and unpredictability are traditionally synonymous, yet large-scale machine learning methods recently have demonstrated a surprising ability to forecast chaotic systems well beyond typical predictability horizons. However, recent works disagree on whether specialized methods grounded in dynamical systems theory, such as reservoir computers or neural ordinary differential equations, outperform general-purpose large-scale learning methods such as transformers or recurrent neural networks. These prior studies perform comparisons on few individually-chosen chaotic systems, thereby precluding robust quantification of how statistical modeling choices and dynamical invariants of different chaotic systems jointly determine empirical predictability. Here, we perform the largest to-date comparative study of forecasting methods on the classical problem of forecasting chaos: we benchmark 24 state-of-the-art forecasting methods on a crowdsourced database of 135 low-dimensional systems with 17 forecast metrics. We find that large-scale, domain-agnostic forecasting methods consistently produce predictions that remain accurate up to two dozen Lyapunov times, thereby accessing a new long-horizon forecasting regime well beyond classical methods. We find that, in this regime, accuracy decorrelates with classical invariant measures of predictability like the Lyapunov exponent. However, in data-limited settings outside the long-horizon regime, we find that physics-based hybrid methods retain a comparative advantage due to their strong inductive biases.
Latent State Models of Training Dynamics
The impact of randomness on model training is poorly understood. How do differences in data order and initialization actually manifest in the model, such that some training runs outperform others or converge faster? Furthermore, how can we interpret the resulting training dynamics and the phase transitions that characterize different trajectories? To understand the effect of randomness on the dynamics and outcomes of neural network training, we train models multiple times with different random seeds and compute a variety of metrics throughout training, such as the L_2 norm, mean, and variance of the neural network's weights. We then fit a hidden Markov model (HMM) over the resulting sequences of metrics. The HMM represents training as a stochastic process of transitions between latent states, providing an intuitive overview of significant changes during training. Using our method, we produce a low-dimensional, discrete representation of training dynamics on grokking tasks, image classification, and masked language modeling. We use the HMM representation to study phase transitions and identify latent "detour" states that slow down convergence.
Entropic Neural Optimal Transport via Diffusion Processes
We propose a novel neural algorithm for the fundamental problem of computing the entropic optimal transport (EOT) plan between continuous probability distributions which are accessible by samples. Our algorithm is based on the saddle point reformulation of the dynamic version of EOT which is known as the Schr\"odinger Bridge problem. In contrast to the prior methods for large-scale EOT, our algorithm is end-to-end and consists of a single learning step, has fast inference procedure, and allows handling small values of the entropy regularization coefficient which is of particular importance in some applied problems. Empirically, we show the performance of the method on several large-scale EOT tasks. https://github.com/ngushchin/EntropicNeuralOptimalTransport
Quantum Monte Carlo simulations in the restricted Hilbert space of Rydberg atom arrays
Rydberg atom arrays have emerged as a powerful platform to simulate a number of exotic quantum ground states and phase transitions. To verify these capabilities numerically, we develop a versatile quantum Monte Carlo sampling technique which operates in the reduced Hilbert space generated by enforcing the constraint of a Rydberg blockade. We use the framework of stochastic series expansion and show that in the restricted space, the configuration space of operator strings can be understood as a hard rod gas in d+1 dimensions. We use this mapping to develop cluster algorithms which can be visualized as various non-local movements of rods. We study the efficiency of each of our updates individually and collectively. To elucidate the utility of the algorithm, we show that it can efficiently generate the phase diagram of a Rydberg atom array, to temperatures much smaller than all energy scales involved, on a Kagom\'e link lattice. This is of broad interest as the presence of a Z_2 spin liquid has been hypothesized recently.
Representation Learning: A Review and New Perspectives
The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning.
On the Measure of Intelligence
To make deliberate progress towards more intelligent and more human-like artificial systems, we need to be following an appropriate feedback signal: we need to be able to define and evaluate intelligence in a way that enables comparisons between two systems, as well as comparisons with humans. Over the past hundred years, there has been an abundance of attempts to define and measure intelligence, across both the fields of psychology and AI. We summarize and critically assess these definitions and evaluation approaches, while making apparent the two historical conceptions of intelligence that have implicitly guided them. We note that in practice, the contemporary AI community still gravitates towards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks such as board games and video games. We argue that solely measuring skill at any given task falls short of measuring intelligence, because skill is heavily modulated by prior knowledge and experience: unlimited priors or unlimited training data allow experimenters to "buy" arbitrary levels of skills for a system, in a way that masks the system's own generalization power. We then articulate a new formal definition of intelligence based on Algorithmic Information Theory, describing intelligence as skill-acquisition efficiency and highlighting the concepts of scope, generalization difficulty, priors, and experience. Using this definition, we propose a set of guidelines for what a general AI benchmark should look like. Finally, we present a benchmark closely following these guidelines, the Abstraction and Reasoning Corpus (ARC), built upon an explicit set of priors designed to be as close as possible to innate human priors. We argue that ARC can be used to measure a human-like form of general fluid intelligence and that it enables fair general intelligence comparisons between AI systems and humans.
VIB is Half Bayes
In discriminative settings such as regression and classification there are two random variables at play, the inputs X and the targets Y. Here, we demonstrate that the Variational Information Bottleneck can be viewed as a compromise between fully empirical and fully Bayesian objectives, attempting to minimize the risks due to finite sampling of Y only. We argue that this approach provides some of the benefits of Bayes while requiring only some of the work.
ProbGate at EHRSQL 2024: Enhancing SQL Query Generation Accuracy through Probabilistic Threshold Filtering and Error Handling
Recently, deep learning-based language models have significantly enhanced text-to-SQL tasks, with promising applications in retrieving patient records within the medical domain. One notable challenge in such applications is discerning unanswerable queries. Through fine-tuning model, we demonstrate the feasibility of converting medical record inquiries into SQL queries. Additionally, we introduce an entropy-based method to identify and filter out unanswerable results. We further enhance result quality by filtering low-confidence SQL through log probability-based distribution, while grammatical and schema errors are mitigated by executing queries on the actual database. We experimentally verified that our method can filter unanswerable questions, which can be widely utilized even when the parameters of the model are not accessible, and that it can be effectively utilized in practice.
Statistical Learning under Heterogenous Distribution Shift
This paper studies the prediction of a target z from a pair of random variables (x,y), where the ground-truth predictor is additive E[z mid x,y] = f_star(x) +g_{star}(y). We study the performance of empirical risk minimization (ERM) over functions f+g, f in F and g in G, fit on a given training distribution, but evaluated on a test distribution which exhibits covariate shift. We show that, when the class F is "simpler" than G (measured, e.g., in terms of its metric entropy), our predictor is more resilient to heterogenous covariate shifts in which the shift in x is much greater than that in y. These results rely on a novel H\"older style inequality for the Dudley integral which may be of independent interest. Moreover, we corroborate our theoretical findings with experiments demonstrating improved resilience to shifts in "simpler" features across numerous domains.
Memory Capacity of Nonlinear Recurrent Networks: Is it Informative?
The total memory capacity (MC) of linear recurrent neural networks (RNNs) has been proven to be equal to the rank of the corresponding Kalman controllability matrix, and it is almost surely maximal for connectivity and input weight matrices drawn from regular distributions. This fact questions the usefulness of this metric in distinguishing the performance of linear RNNs in the processing of stochastic signals. This note shows that the MC of random nonlinear RNNs yields arbitrary values within established upper and lower bounds depending just on the input process scale. This confirms that the existing definition of MC in linear and nonlinear cases has no practical value.
Theoretical Behavior of XAI Methods in the Presence of Suppressor Variables
In recent years, the community of 'explainable artificial intelligence' (XAI) has created a vast body of methods to bridge a perceived gap between model 'complexity' and 'interpretability'. However, a concrete problem to be solved by XAI methods has not yet been formally stated. As a result, XAI methods are lacking theoretical and empirical evidence for the 'correctness' of their explanations, limiting their potential use for quality-control and transparency purposes. At the same time, Haufe et al. (2014) showed, using simple toy examples, that even standard interpretations of linear models can be highly misleading. Specifically, high importance may be attributed to so-called suppressor variables lacking any statistical relation to the prediction target. This behavior has been confirmed empirically for a large array of XAI methods in Wilming et al. (2022). Here, we go one step further by deriving analytical expressions for the behavior of a variety of popular XAI methods on a simple two-dimensional binary classification problem involving Gaussian class-conditional distributions. We show that the majority of the studied approaches will attribute non-zero importance to a non-class-related suppressor feature in the presence of correlated noise. This poses important limitations on the interpretations and conclusions that the outputs of these XAI methods can afford.
On the higher-order smallest ring star network of Chialvo neurons under diffusive couplings
We put forward the dynamical study of a novel higher-order small network of Chialvo neurons arranged in a ring-star topology, with the neurons interacting via linear diffusive couplings. This model is perceived to imitate the nonlinear dynamical properties exhibited by a realistic nervous system where the neurons transfer information through higher-order multi-body interactions. We first analyze our model using the tools from nonlinear dynamics literature: fixed point analysis, Jacobian matrix, and bifurcation patterns. We observe the coexistence of chaotic attractors, and also an intriguing route to chaos starting from a fixed point, to period-doubling, to cyclic quasiperiodic closed invariant curves, to ultimately chaos. We numerically observe the existence of codimension-1 bifurcation patterns: saddle-node, period-doubling, and Neimark Sacker. We also qualitatively study the typical phase portraits of the system and numerically quantify chaos and complexity using the 0-1 test and sample entropy measure respectively. Finally, we study the collective behavior of the neurons in terms of two synchronization measures: the cross-correlation coefficient, and the Kuramoto order parameter.
Accounting For Informative Sampling When Learning to Forecast Treatment Outcomes Over Time
Machine learning (ML) holds great potential for accurately forecasting treatment outcomes over time, which could ultimately enable the adoption of more individualized treatment strategies in many practical applications. However, a significant challenge that has been largely overlooked by the ML literature on this topic is the presence of informative sampling in observational data. When instances are observed irregularly over time, sampling times are typically not random, but rather informative -- depending on the instance's characteristics, past outcomes, and administered treatments. In this work, we formalize informative sampling as a covariate shift problem and show that it can prohibit accurate estimation of treatment outcomes if not properly accounted for. To overcome this challenge, we present a general framework for learning treatment outcomes in the presence of informative sampling using inverse intensity-weighting, and propose a novel method, TESAR-CDE, that instantiates this framework using Neural CDEs. Using a simulation environment based on a clinical use case, we demonstrate the effectiveness of our approach in learning under informative sampling.
Model Weight Theft With Just Noise Inputs: The Curious Case of the Petulant Attacker
This paper explores the scenarios under which an attacker can claim that 'Noise and access to the softmax layer of the model is all you need' to steal the weights of a convolutional neural network whose architecture is already known. We were able to achieve 96% test accuracy using the stolen MNIST model and 82% accuracy using the stolen KMNIST model learned using only i.i.d. Bernoulli noise inputs. We posit that this theft-susceptibility of the weights is indicative of the complexity of the dataset and propose a new metric that captures the same. The goal of this dissemination is to not just showcase how far knowing the architecture can take you in terms of model stealing, but to also draw attention to this rather idiosyncratic weight learnability aspects of CNNs spurred by i.i.d. noise input. We also disseminate some initial results obtained with using the Ising probability distribution in lieu of the i.i.d. Bernoulli distribution.
Confucius3-Math: A Lightweight High-Performance Reasoning LLM for Chinese K-12 Mathematics Learning
We introduce Confucius3-Math, an open-source large language model with 14B parameters that (1) runs efficiently on a single consumer-grade GPU; (2) achieves SOTA performances on a range of mathematical reasoning tasks, outperforming many models with significantly larger sizes. In particular, as part of our mission to enhancing education and knowledge dissemination with AI, Confucius3-Math is specifically committed to mathematics learning for Chinese K-12 students and educators. Built via post-training with large-scale reinforcement learning (RL), Confucius3-Math aligns with national curriculum and excels at solving main-stream Chinese K-12 mathematical problems with low cost. In this report we share our development recipe, the challenges we encounter and the techniques we develop to overcome them. In particular, we introduce three technical innovations: Targeted Entropy Regularization, Recent Sample Recovery and Policy-Specific Hardness Weighting. These innovations encompass a new entropy regularization, a novel data scheduling policy, and an improved group-relative advantage estimator. Collectively, they significantly stabilize the RL training, improve data efficiency, and boost performance. Our work demonstrates the feasibility of building strong reasoning models in a particular domain at low cost. We open-source our model and code at https://github.com/netease-youdao/Confucius3-Math.
What Drives Cluster Cool-Core Transformations? A Population Level Analysis of TNG-Cluster
In this study, we examine the frequency and physical drivers of transformations from cool-core (CC) to non-cool-core (NCC) clusters, and vice versa, in a sample of 352 massive galaxy clusters (M_vir = 10^14-15.3 M_sun) from the TNG-Cluster magnetohydrodynamical cosmological simulation of galaxies. By identifying transformations based on the evolution of central entropy and focusing on z<2.5, we find that clusters frequently undergo such events, depending on their assembly and supermassive black hole histories. On average, clusters experience 2 to 3 transformations. Transformations can occur in both directions and can be temporary, but those to higher entropy cores, i.e. in the direction from CC to NCC states, are the vast majority. CC phases are shorter than NCC phases, and thus overall the TNG-Cluster population forms with low-entropy cores and moves towards NCC states with time. We study the role that mergers play in driving transformations, and find that mergers within ~1Gyr prior to a transformation toward higher (but not lower) entropy cores occur statistically more often than in a random control sample. Most importantly, we find examples of mergers associated with CC disruption regardless of their mass ratio or angular momentum. However, past merger activity is not a good predictor for z=0 CC status, at least based on core entropy, even though clusters undergoing more mergers eventually have the highest core entropy values at z=0. We consider the interplay between AGN feedback and evolving cluster core thermodynamics. We find that core transformations are accompanied by an increase in AGN activity, whereby frequent and repeated (kinetic) energy injections from the central SMBHs can produce a collective, long-term impact on central entropy, ultimately heating cluster cores. Whether such fast-paced periods of AGN activity are triggered by mergers is plausible, but not necessary.
Dissecting the Effects of SGD Noise in Distinct Regimes of Deep Learning
Understanding when the noise in stochastic gradient descent (SGD) affects generalization of deep neural networks remains a challenge, complicated by the fact that networks can operate in distinct training regimes. Here we study how the magnitude of this noise T affects performance as the size of the training set P and the scale of initialization alpha are varied. For gradient descent, alpha is a key parameter that controls if the network is `lazy'(alphagg1) or instead learns features (alphall1). For classification of MNIST and CIFAR10 images, our central results are: (i) obtaining phase diagrams for performance in the (alpha,T) plane. They show that SGD noise can be detrimental or instead useful depending on the training regime. Moreover, although increasing T or decreasing alpha both allow the net to escape the lazy regime, these changes can have opposite effects on performance. (ii) Most importantly, we find that the characteristic temperature T_c where the noise of SGD starts affecting the trained model (and eventually performance) is a power law of P. We relate this finding with the observation that key dynamical quantities, such as the total variation of weights during training, depend on both T and P as power laws. These results indicate that a key effect of SGD noise occurs late in training by affecting the stopping process whereby all data are fitted. Indeed, we argue that due to SGD noise, nets must develop a stronger `signal', i.e. larger informative weights, to fit the data, leading to a longer training time. A stronger signal and a longer training time are also required when the size of the training set P increases. We confirm these views in the perceptron model, where signal and noise can be precisely measured. Interestingly, exponents characterizing the effect of SGD depend on the density of data near the decision boundary, as we explain.
ConceptCarve: Dynamic Realization of Evidence
Finding evidence for human opinion and behavior at scale is a challenging task, often requiring an understanding of sophisticated thought patterns among vast online communities found on social media. For example, studying how gun ownership is related to the perception of Freedom, requires a retrieval system that can operate at scale over social media posts, while dealing with two key challenges: (1) identifying abstract concept instances, (2) which can be instantiated differently across different communities. To address these, we introduce ConceptCarve, an evidence retrieval framework that utilizes traditional retrievers and LLMs to dynamically characterize the search space during retrieval. Our experiments show that ConceptCarve surpasses traditional retrieval systems in finding evidence within a social media community. It also produces an interpretable representation of the evidence for that community, which we use to qualitatively analyze complex thought patterns that manifest differently across the communities.
An Empirical Study of Example Forgetting during Deep Neural Network Learning
Inspired by the phenomenon of catastrophic forgetting, we investigate the learning dynamics of neural networks as they train on single classification tasks. Our goal is to understand whether a related phenomenon occurs when data does not undergo a clear distributional shift. We define a `forgetting event' to have occurred when an individual training example transitions from being classified correctly to incorrectly over the course of learning. Across several benchmark data sets, we find that: (i) certain examples are forgotten with high frequency, and some not at all; (ii) a data set's (un)forgettable examples generalize across neural architectures; and (iii) based on forgetting dynamics, a significant fraction of examples can be omitted from the training data set while still maintaining state-of-the-art generalization performance.
Who Needs to Know? Minimal Knowledge for Optimal Coordination
To optimally coordinate with others in cooperative games, it is often crucial to have information about one's collaborators: successful driving requires understanding which side of the road to drive on. However, not every feature of collaborators is strategically relevant: the fine-grained acceleration of drivers may be ignored while maintaining optimal coordination. We show that there is a well-defined dichotomy between strategically relevant and irrelevant information. Moreover, we show that, in dynamic games, this dichotomy has a compact representation that can be efficiently computed via a Bellman backup operator. We apply this algorithm to analyze the strategically relevant information for tasks in both a standard and a partially observable version of the Overcooked environment. Theoretical and empirical results show that our algorithms are significantly more efficient than baselines. Videos are available at https://minknowledge.github.io.
Does Sparsity Help in Learning Misspecified Linear Bandits?
Recently, the study of linear misspecified bandits has generated intriguing implications of the hardness of learning in bandits and reinforcement learning (RL). In particular, Du et al. (2020) show that even if a learner is given linear features in R^d that approximate the rewards in a bandit or RL with a uniform error of varepsilon, searching for an O(varepsilon)-optimal action requires pulling at least Omega(exp(d)) queries. Furthermore, Lattimore et al. (2020) show that a degraded O(varepsilond)-optimal solution can be learned within poly(d/varepsilon) queries. Yet it is unknown whether a structural assumption on the ground-truth parameter, such as sparsity, could break the varepsilond barrier. In this paper, we address this question by showing that algorithms can obtain O(varepsilon)-optimal actions by querying O(varepsilon^{-s}d^s) actions, where s is the sparsity parameter, removing the exp(d)-dependence. We then establish information-theoretical lower bounds, i.e., Omega(exp(s)), to show that our upper bound on sample complexity is nearly tight if one demands an error O(s^{delta}varepsilon) for 0<delta<1. For deltageq 1, we further show that poly(s/varepsilon) queries are possible when the linear features are "good" and even in general settings. These results provide a nearly complete picture of how sparsity can help in misspecified bandit learning and provide a deeper understanding of when linear features are "useful" for bandit and reinforcement learning with misspecification.
Disintegration and Bayesian Inversion via String Diagrams
The notions of disintegration and Bayesian inversion are fundamental in conditional probability theory. They produce channels, as conditional probabilities, from a joint state, or from an already given channel (in opposite direction). These notions exist in the literature, in concrete situations, but are presented here in abstract graphical formulations. The resulting abstract descriptions are used for proving basic results in conditional probability theory. The existence of disintegration and Bayesian inversion is discussed for discrete probability, and also for measure-theoretic probability --- via standard Borel spaces and via likelihoods. Finally, the usefulness of disintegration and Bayesian inversion is illustrated in several examples.
Driven by Compression Progress: A Simple Principle Explains Essential Aspects of Subjective Beauty, Novelty, Surprise, Interestingness, Attention, Curiosity, Creativity, Art, Science, Music, Jokes
I argue that data becomes temporarily interesting by itself to some self-improving, but computationally limited, subjective observer once he learns to predict or compress the data in a better way, thus making it subjectively simpler and more beautiful. Curiosity is the desire to create or discover more non-random, non-arbitrary, regular data that is novel and surprising not in the traditional sense of Boltzmann and Shannon but in the sense that it allows for compression progress because its regularity was not yet known. This drive maximizes interestingness, the first derivative of subjective beauty or compressibility, that is, the steepness of the learning curve. It motivates exploring infants, pure mathematicians, composers, artists, dancers, comedians, yourself, and (since 1990) artificial systems.
Learning Distributions over Quantum Measurement Outcomes
Shadow tomography for quantum states provides a sample efficient approach for predicting the properties of quantum systems when the properties are restricted to expectation values of 2-outcome POVMs. However, these shadow tomography procedures yield poor bounds if there are more than 2 outcomes per measurement. In this paper, we consider a general problem of learning properties from unknown quantum states: given an unknown d-dimensional quantum state rho and M unknown quantum measurements M_1,...,M_M with Kgeq 2 outcomes, estimating the probability distribution for applying M_i on rho to within total variation distance epsilon. Compared to the special case when K=2, we need to learn unknown distributions instead of values. We develop an online shadow tomography procedure that solves this problem with high success probability requiring O(Klog^2Mlog d/epsilon^4) copies of rho. We further prove an information-theoretic lower bound that at least Omega(min{d^2,K+log M}/epsilon^2) copies of rho are required to solve this problem with high success probability. Our shadow tomography procedure requires sample complexity with only logarithmic dependence on M and d and is sample-optimal for the dependence on K.
Theoretical bounds on the network community profile from low-rank semi-definite programming
We study a new connection between a technical measure called mu-conductance that arises in the study of Markov chains for sampling convex bodies and the network community profile that characterizes size-resolved properties of clusters and communities in social and information networks. The idea of mu-conductance is similar to the traditional graph conductance, but disregards sets with small volume. We derive a sequence of optimization problems including a low-rank semi-definite program from which we can derive a lower bound on the optimal mu-conductance value. These ideas give the first theoretically sound bound on the behavior of the network community profile for a wide range of cluster sizes. The algorithm scales up to graphs with hundreds of thousands of nodes and we demonstrate how our framework validates the predicted structures of real-world graphs.
When is Realizability Sufficient for Off-Policy Reinforcement Learning?
Model-free algorithms for reinforcement learning typically require a condition called Bellman completeness in order to successfully operate off-policy with function approximation, unless additional conditions are met. However, Bellman completeness is a requirement that is much stronger than realizability and that is deemed to be too strong to hold in practice. In this work, we relax this structural assumption and analyze the statistical complexity of off-policy reinforcement learning when only realizability holds for the prescribed function class. We establish finite-sample guarantees for off-policy reinforcement learning that are free of the approximation error term known as inherent Bellman error, and that depend on the interplay of three factors. The first two are well known: they are the metric entropy of the function class and the concentrability coefficient that represents the cost of learning off-policy. The third factor is new, and it measures the violation of Bellman completeness, namely the mis-alignment between the chosen function class and its image through the Bellman operator. In essence, these error bounds establish that off-policy reinforcement learning remains statistically viable even in absence of Bellman completeness, and characterize the intermediate situation between the favorable Bellman complete setting and the worst-case scenario where exponential lower bounds are in force. Our analysis directly applies to the solution found by temporal difference algorithms when they converge.
Chain of Log-Concave Markov Chains
We introduce a theoretical framework for sampling from unnormalized densities based on a smoothing scheme that uses an isotropic Gaussian kernel with a single fixed noise scale. We prove one can decompose sampling from a density (minimal assumptions made on the density) into a sequence of sampling from log-concave conditional densities via accumulation of noisy measurements with equal noise levels. Our construction is unique in that it keeps track of a history of samples, making it non-Markovian as a whole, but it is lightweight algorithmically as the history only shows up in the form of a running empirical mean of samples. Our sampling algorithm generalizes walk-jump sampling (Saremi & Hyv\"arinen, 2019). The "walk" phase becomes a (non-Markovian) chain of (log-concave) Markov chains. The "jump" from the accumulated measurements is obtained by empirical Bayes. We study our sampling algorithm quantitatively using the 2-Wasserstein metric and compare it with various Langevin MCMC algorithms. We also report a remarkable capacity of our algorithm to "tunnel" between modes of a distribution.
Optimal fidelity in implementing Grover's search algorithm on open quantum system
We investigate the fidelity of Grover's search algorithm by implementing it on an open quantum system. In particular, we study with what accuracy one can estimate that the algorithm would deliver the searched state. In reality, every system has some influence of its environment. We include the environmental effects on the system dynamics by using a recently reported fluctuation-regulated quantum master equation (FRQME). The FRQME indicates that in addition to the regular relaxation due to system-environment coupling, the applied drive also causes dissipation in the system dynamics. As a result, the fidelity is found to depend on both the drive-induced dissipative terms and the relaxation terms and we find that there exists a competition between them, leading to an optimum value of the drive amplitude for which the fidelity becomes maximum. For efficient implementation of the search algorithm, precise knowledge of this optimum drive amplitude is essential.
MEMO: A Deep Network for Flexible Combination of Episodic Memories
Recent research developing neural network architectures with external memory have often used the benchmark bAbI question and answering dataset which provides a challenging number of tasks requiring reasoning. Here we employed a classic associative inference task from the memory-based reasoning neuroscience literature in order to more carefully probe the reasoning capacity of existing memory-augmented architectures. This task is thought to capture the essence of reasoning -- the appreciation of distant relationships among elements distributed across multiple facts or memories. Surprisingly, we found that current architectures struggle to reason over long distance associations. Similar results were obtained on a more complex task involving finding the shortest path between nodes in a path. We therefore developed MEMO, an architecture endowed with the capacity to reason over longer distances. This was accomplished with the addition of two novel components. First, it introduces a separation between memories (facts) stored in external memory and the items that comprise these facts in external memory. Second, it makes use of an adaptive retrieval mechanism, allowing a variable number of "memory hops" before the answer is produced. MEMO is capable of solving our novel reasoning tasks, as well as match state of the art results in bAbI.
BitTensor: A Peer-to-Peer Intelligence Market
As with other commodities, markets could help us efficiently produce machine intelligence. We propose a market where intelligence is priced by other intelligence systems peer-to-peer across the internet. Peers rank each other by training neural networks which learn the value of their neighbors. Scores accumulate on a digital ledger where high ranking peers are monetarily rewarded with additional weight in the network. However, this form of peer-ranking is not resistant to collusion, which could disrupt the accuracy of the mechanism. The solution is a connectivity-based regularization which exponentially rewards trusted peers, making the system resistant to collusion of up to 50 percent of the network weight. The result is a collectively run intelligence market which continual produces newly trained models and pays contributors who create information theoretic value.
Dense Hebbian neural networks: a replica symmetric picture of unsupervised learning
We consider dense, associative neural-networks trained with no supervision and we investigate their computational capabilities analytically, via a statistical-mechanics approach, and numerically, via Monte Carlo simulations. In particular, we obtain a phase diagram summarizing their performance as a function of the control parameters such as the quality and quantity of the training dataset and the network storage, valid in the limit of large network size and structureless datasets. Moreover, we establish a bridge between macroscopic observables standardly used in statistical mechanics and loss functions typically used in the machine learning. As technical remarks, from the analytic side, we implement large deviations and stability analysis within Guerra's interpolation to tackle the not-Gaussian distributions involved in the post-synaptic potentials while, from the computational counterpart, we insert Plefka approximation in the Monte Carlo scheme, to speed up the evaluation of the synaptic tensors, overall obtaining a novel and broad approach to investigate neural networks in general.
The Curse of Dense Low-Dimensional Information Retrieval for Large Index Sizes
Information Retrieval using dense low-dimensional representations recently became popular and showed out-performance to traditional sparse-representations like BM25. However, no previous work investigated how dense representations perform with large index sizes. We show theoretically and empirically that the performance for dense representations decreases quicker than sparse representations for increasing index sizes. In extreme cases, this can even lead to a tipping point where at a certain index size sparse representations outperform dense representations. We show that this behavior is tightly connected to the number of dimensions of the representations: The lower the dimension, the higher the chance for false positives, i.e. returning irrelevant documents.
All Roads Lead to Likelihood: The Value of Reinforcement Learning in Fine-Tuning
From a first-principles perspective, it may seem odd that the strongest results in foundation model fine-tuning (FT) are achieved via a relatively complex, two-stage training procedure. Specifically, one first trains a reward model (RM) on some dataset (e.g. human preferences) before using it to provide online feedback as part of a downstream reinforcement learning (RL) procedure, rather than directly optimizing the policy parameters on the dataset via offline maximum likelihood estimation. In fact, from an information-theoretic perspective, we can only lose information via passing through a reward model and cannot create any new information via on-policy sampling. To explain this discrepancy, we scrutinize several hypotheses on the value of RL in FT through both theoretical and empirical lenses. Of the hypotheses considered, we find the most support for the explanation that on problems with a generation-verification gap, the combination of the ease of learning the relatively simple RM (verifier) from the preference data, coupled with the ability of the downstream RL procedure to then filter its search space to the subset of policies (generators) that are optimal for relatively simple verifiers is what leads to the superior performance of online FT.
A Machine Learning Perspective on Predictive Coding with PAQ
PAQ8 is an open source lossless data compression algorithm that currently achieves the best compression rates on many benchmarks. This report presents a detailed description of PAQ8 from a statistical machine learning perspective. It shows that it is possible to understand some of the modules of PAQ8 and use this understanding to improve the method. However, intuitive statistical explanations of the behavior of other modules remain elusive. We hope the description in this report will be a starting point for discussions that will increase our understanding, lead to improvements to PAQ8, and facilitate a transfer of knowledge from PAQ8 to other machine learning methods, such a recurrent neural networks and stochastic memoizers. Finally, the report presents a broad range of new applications of PAQ to machine learning tasks including language modeling and adaptive text prediction, adaptive game playing, classification, and compression using features from the field of deep learning.
Memory, Consciousness and Large Language Model
With the development in cognitive science and Large Language Models (LLMs), increasing connections have come to light between these two distinct fields. Building upon these connections, we propose a conjecture suggesting the existence of a duality between LLMs and Tulving's theory of memory. We identify a potential correspondence between Tulving's synergistic ecphory model (SEM) of retrieval and the emergent abilities observed in LLMs, serving as supporting evidence for our conjecture. Furthermore, we speculate that consciousness may be considered a form of emergent ability based on this duality. We also discuss how other theories of consciousness intersect with our research.
Scaling Laws for Associative Memories
Learning arguably involves the discovery and memorization of abstract rules. The aim of this paper is to study associative memory mechanisms. Our model is based on high-dimensional matrices consisting of outer products of embeddings, which relates to the inner layers of transformer language models. We derive precise scaling laws with respect to sample size and parameter size, and discuss the statistical efficiency of different estimators, including optimization-based algorithms. We provide extensive numerical experiments to validate and interpret theoretical results, including fine-grained visualizations of the stored memory associations.
Recurrent Neural Networks (RNNs): A gentle Introduction and Overview
State-of-the-art solutions in the areas of "Language Modelling & Generating Text", "Speech Recognition", "Generating Image Descriptions" or "Video Tagging" have been using Recurrent Neural Networks as the foundation for their approaches. Understanding the underlying concepts is therefore of tremendous importance if we want to keep up with recent or upcoming publications in those areas. In this work we give a short overview over some of the most important concepts in the realm of Recurrent Neural Networks which enables readers to easily understand the fundamentals such as but not limited to "Backpropagation through Time" or "Long Short-Term Memory Units" as well as some of the more recent advances like the "Attention Mechanism" or "Pointer Networks". We also give recommendations for further reading regarding more complex topics where it is necessary.
Quantifying surprise in clinical care: Detecting highly informative events in electronic health records with foundation models
We present a foundation model-derived method to identify highly informative tokens and events in electronic health records. Our approach considers incoming data in the entire context of a patient's hospitalization and so can flag anomalous events that rule-based approaches would consider within a normal range. We demonstrate that the events our model flags are significant for predicting downstream patient outcomes and that a fraction of events identified as carrying little information can safely be dropped. Additionally, we show how informativeness can help interpret the predictions of prognostic models trained on foundation model-derived representations.
Advancing Molecular Machine (Learned) Representations with Stereoelectronics-Infused Molecular Graphs
Molecular representation is a foundational element in our understanding of the physical world. Its importance ranges from the fundamentals of chemical reactions to the design of new therapies and materials. Previous molecular machine learning models have employed strings, fingerprints, global features, and simple molecular graphs that are inherently information-sparse representations. However, as the complexity of prediction tasks increases, the molecular representation needs to encode higher fidelity information. This work introduces a novel approach to infusing quantum-chemical-rich information into molecular graphs via stereoelectronic effects. We show that the explicit addition of stereoelectronic interactions significantly improves the performance of molecular machine learning models. Furthermore, stereoelectronics-infused representations can be learned and deployed with a tailored double graph neural network workflow, enabling its application to any downstream molecular machine learning task. Finally, we show that the learned representations allow for facile stereoelectronic evaluation of previously intractable systems, such as entire proteins, opening new avenues of molecular design.
Quantum Internet Protocol Stack: a Comprehensive Survey
Classical Internet evolved exceptionally during the last five decades, from a network comprising a few static nodes in the early days to a leviathan interconnecting billions of devices. This has been possible by the separation of concern principle, for which the network functionalities are organized as a stack of layers, each providing some communication functionalities through specific network protocols. In this survey, we aim at highlighting the impossibility of adapting the classical Internet protocol stack to the Quantum Internet, due to the marvels of quantum mechanics. Indeed, the design of the Quantum Internet requires a major paradigm shift of the whole protocol stack for harnessing the peculiarities of quantum entanglement and quantum information. In this context, we first overview the relevant literature about Quantum Internet protocol stack. Then, stemming from this, we sheds the light on the open problems and required efforts toward the design of an effective and complete Quantum Internet protocol stack. To the best of authors' knowledge, a survey of this type is the first of its own. What emerges from this analysis is that the Quantum Internet, though still in its infancy, is a disruptive technology whose design requires an inter-disciplinary effort at the border between quantum physics, computer and telecommunications engineering.
Future Lens: Anticipating Subsequent Tokens from a Single Hidden State
We conjecture that hidden state vectors corresponding to individual input tokens encode information sufficient to accurately predict several tokens ahead. More concretely, in this paper we ask: Given a hidden (internal) representation of a single token at position t in an input, can we reliably anticipate the tokens that will appear at positions geq t + 2? To test this, we measure linear approximation and causal intervention methods in GPT-J-6B to evaluate the degree to which individual hidden states in the network contain signal rich enough to predict future hidden states and, ultimately, token outputs. We find that, at some layers, we can approximate a model's output with more than 48% accuracy with respect to its prediction of subsequent tokens through a single hidden state. Finally we present a "Future Lens" visualization that uses these methods to create a new view of transformer states.
Classical Sorting Algorithms as a Model of Morphogenesis: self-sorting arrays reveal unexpected competencies in a minimal model of basal intelligence
The emerging field of Diverse Intelligence seeks to identify, formalize, and understand commonalities in behavioral competencies across a wide range of implementations. Especially interesting are simple systems that provide unexpected examples of memory, decision-making, or problem-solving in substrates that at first glance do not appear to be complex enough to implement such capabilities. We seek to develop tools to help understand the minimal requirements for such capabilities, and to learn to recognize and predict basal forms of intelligence in unconventional substrates. Here, we apply novel analyses to the behavior of classical sorting algorithms, short pieces of code which have been studied for many decades. To study these sorting algorithms as a model of biological morphogenesis and its competencies, we break two formerly-ubiquitous assumptions: top-down control (instead, showing how each element within a array of numbers can exert minimal agency and implement sorting policies from the bottom up), and fully reliable hardware (instead, allowing some of the elements to be "damaged" and fail to execute the algorithm). We quantitatively characterize sorting activity as the traversal of a problem space, showing that arrays of autonomous elements sort themselves more reliably and robustly than traditional implementations in the presence of errors. Moreover, we find the ability to temporarily reduce progress in order to navigate around a defect, and unexpected clustering behavior among the elements in chimeric arrays whose elements follow one of two different algorithms. The discovery of emergent problem-solving capacities in simple, familiar algorithms contributes a new perspective to the field of Diverse Intelligence, showing how basal forms of intelligence can emerge in simple systems without being explicitly encoded in their underlying mechanics.
Emergence of Hidden Capabilities: Exploring Learning Dynamics in Concept Space
Modern generative models demonstrate impressive capabilities, likely stemming from an ability to identify and manipulate abstract concepts underlying their training data. However, fundamental questions remain: what determines the concepts a model learns, the order in which it learns them, and its ability to manipulate those concepts? To address these questions, we propose analyzing a model's learning dynamics via a framework we call the concept space, where each axis represents an independent concept underlying the data generating process. By characterizing learning dynamics in this space, we identify how the speed at which a concept is learned, and hence the order of concept learning, is controlled by properties of the data we term concept signal. Further, we observe moments of sudden turns in the direction of a model's learning dynamics in concept space. Surprisingly, these points precisely correspond to the emergence of hidden capabilities, i.e., where latent interventions show the model possesses the capability to manipulate a concept, but these capabilities cannot yet be elicited via naive input prompting. While our results focus on synthetically defined toy datasets, we hypothesize a general claim on emergence of hidden capabilities may hold: generative models possess latent capabilities that emerge suddenly and consistently during training, though a model might not exhibit these capabilities under naive input prompting.
Capacity, Bandwidth, and Compositionality in Emergent Language Learning
Many recent works have discussed the propensity, or lack thereof, for emergent languages to exhibit properties of natural languages. A favorite in the literature is learning compositionality. We note that most of those works have focused on communicative bandwidth as being of primary importance. While important, it is not the only contributing factor. In this paper, we investigate the learning biases that affect the efficacy and compositionality of emergent languages. Our foremost contribution is to explore how capacity of a neural network impacts its ability to learn a compositional language. We additionally introduce a set of evaluation metrics with which we analyze the learned languages. Our hypothesis is that there should be a specific range of model capacity and channel bandwidth that induces compositional structure in the resulting language and consequently encourages systematic generalization. While we empirically see evidence for the bottom of this range, we curiously do not find evidence for the top part of the range and believe that this is an open question for the community.
The P versus NP Problem in Quantum Physics
Motivated by the fact that information is encoded and processed by physical systems, the P versus NP problem is examined in terms of physical processes. In particular, we consider P as a class of deterministic, and NP as nondeterministic, polynomial-time physical processes. Based on these identifications, we review a self-reference physical process in quantum theory, which belongs to NP but cannot be contained in P.
Theoretical Foundations of Deep Selective State-Space Models
Structured state-space models (SSMs) such as S4, stemming from the seminal work of Gu et al., are gaining popularity as effective approaches for modeling sequential data. Deep SSMs demonstrate outstanding performance across a diverse set of domains, at a reduced training and inference cost compared to attention-based transformers. Recent developments show that if the linear recurrence powering SSMs allows for multiplicative interactions between inputs and hidden states (e.g. GateLoop, Mamba, GLA), then the resulting architecture can surpass in both in accuracy and efficiency attention-powered foundation models trained on text, at scales of billion parameters. In this paper, we give theoretical grounding to this recent finding using tools from Rough Path Theory: we show that when random linear recurrences are equipped with simple input-controlled transitions (selectivity mechanism), then the hidden state is provably a low-dimensional projection of a powerful mathematical object called the signature of the input -- capturing non-linear interactions between tokens at distinct timescales. Our theory not only motivates the success of modern selective state-space models such as Mamba but also provides a solid framework to understand the expressive power of future SSM variants.
Sharp Noisy Binary Search with Monotonic Probabilities
We revisit the noisy binary search model of Karp and Kleinberg, in which we have n coins with unknown probabilities p_i that we can flip. The coins are sorted by increasing p_i, and we would like to find where the probability crosses (to within varepsilon) of a target value tau. This generalized the fixed-noise model of Burnashev and Zigangirov , in which p_i = 1{2} pm varepsilon, to a setting where coins near the target may be indistinguishable from it. Karp and Kleinberg showed that Theta(1{varepsilon^2} log n) samples are necessary and sufficient for this task. We produce a practical algorithm by solving two theoretical challenges: high-probability behavior and sharp constants. We give an algorithm that succeeds with probability 1-delta from \[ 1{C_{\tau, \varepsilon}} \cdot \left(\lg n + O(\log^{2/3} n \log^{1/3} 1{\delta} + \log 1{\delta})\right) \] samples, where C_{tau, varepsilon} is the optimal such constant achievable. For delta > n^{-o(1)} this is within 1 + o(1) of optimal, and for delta ll 1 it is the first bound within constant factors of optimal.
Universal Online Learning with Unbounded Losses: Memory Is All You Need
We resolve an open problem of Hanneke on the subject of universally consistent online learning with non-i.i.d. processes and unbounded losses. The notion of an optimistically universal learning rule was defined by Hanneke in an effort to study learning theory under minimal assumptions. A given learning rule is said to be optimistically universal if it achieves a low long-run average loss whenever the data generating process makes this goal achievable by some learning rule. Hanneke posed as an open problem whether, for every unbounded loss, the family of processes admitting universal learning are precisely those having a finite number of distinct values almost surely. In this paper, we completely resolve this problem, showing that this is indeed the case. As a consequence, this also offers a dramatically simpler formulation of an optimistically universal learning rule for any unbounded loss: namely, the simple memorization rule already suffices. Our proof relies on constructing random measurable partitions of the instance space and could be of independent interest for solving other open questions. We extend the results to the non-realizable setting thereby providing an optimistically universal Bayes consistent learning rule.
What makes an image realistic?
The last decade has seen tremendous progress in our ability to generate realistic-looking data, be it images, text, audio, or video. Here, we discuss the closely related problem of quantifying realism, that is, designing functions that can reliably tell realistic data from unrealistic data. This problem turns out to be significantly harder to solve and remains poorly understood, despite its prevalence in machine learning and recent breakthroughs in generative AI. Drawing on insights from algorithmic information theory, we discuss why this problem is challenging, why a good generative model alone is insufficient to solve it, and what a good solution would look like. In particular, we introduce the notion of a universal critic, which unlike adversarial critics does not require adversarial training. While universal critics are not immediately practical, they can serve both as a North Star for guiding practical implementations and as a tool for analyzing existing attempts to capture realism.