Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeFairness-Aware Graph Neural Networks: A Survey
Graph Neural Networks (GNNs) have become increasingly important due to their representational power and state-of-the-art predictive performance on many fundamental learning tasks. Despite this success, GNNs suffer from fairness issues that arise as a result of the underlying graph data and the fundamental aggregation mechanism that lies at the heart of the large class of GNN models. In this article, we examine and categorize fairness techniques for improving the fairness of GNNs. Previous work on fair GNN models and techniques are discussed in terms of whether they focus on improving fairness during a preprocessing step, during training, or in a post-processing phase. Furthermore, we discuss how such techniques can be used together whenever appropriate, and highlight the advantages and intuition as well. We also introduce an intuitive taxonomy for fairness evaluation metrics including graph-level fairness, neighborhood-level fairness, embedding-level fairness, and prediction-level fairness metrics. In addition, graph datasets that are useful for benchmarking the fairness of GNN models are summarized succinctly. Finally, we highlight key open problems and challenges that remain to be addressed.
Finetuning Text-to-Image Diffusion Models for Fairness
The rapid adoption of text-to-image diffusion models in society underscores an urgent need to address their biases. Without interventions, these biases could propagate a skewed worldview and restrict opportunities for minority groups. In this work, we frame fairness as a distributional alignment problem. Our solution consists of two main technical contributions: (1) a distributional alignment loss that steers specific characteristics of the generated images towards a user-defined target distribution, and (2) adjusted direct finetuning of diffusion model's sampling process (adjusted DFT), which leverages an adjusted gradient to directly optimize losses defined on the generated images. Empirically, our method markedly reduces gender, racial, and their intersectional biases for occupational prompts. Gender bias is significantly reduced even when finetuning just five soft tokens. Crucially, our method supports diverse perspectives of fairness beyond absolute equality, which is demonstrated by controlling age to a 75% young and 25% old distribution while simultaneously debiasing gender and race. Finally, our method is scalable: it can debias multiple concepts at once by simply including these prompts in the finetuning data. We share code and various fair diffusion model adaptors at https://sail-sg.github.io/finetune-fair-diffusion/.
Fair Normalizing Flows
Fair representation learning is an attractive approach that promises fairness of downstream predictors by encoding sensitive data. Unfortunately, recent work has shown that strong adversarial predictors can still exhibit unfairness by recovering sensitive attributes from these representations. In this work, we present Fair Normalizing Flows (FNF), a new approach offering more rigorous fairness guarantees for learned representations. Specifically, we consider a practical setting where we can estimate the probability density for sensitive groups. The key idea is to model the encoder as a normalizing flow trained to minimize the statistical distance between the latent representations of different groups. The main advantage of FNF is that its exact likelihood computation allows us to obtain guarantees on the maximum unfairness of any potentially adversarial downstream predictor. We experimentally demonstrate the effectiveness of FNF in enforcing various group fairness notions, as well as other attractive properties such as interpretability and transfer learning, on a variety of challenging real-world datasets.
Bridging Fairness and Environmental Sustainability in Natural Language Processing
Fairness and environmental impact are important research directions for the sustainable development of artificial intelligence. However, while each topic is an active research area in natural language processing (NLP), there is a surprising lack of research on the interplay between the two fields. This lacuna is highly problematic, since there is increasing evidence that an exclusive focus on fairness can actually hinder environmental sustainability, and vice versa. In this work, we shed light on this crucial intersection in NLP by (1) investigating the efficiency of current fairness approaches through surveying example methods for reducing unfair stereotypical bias from the literature, and (2) evaluating a common technique to reduce energy consumption (and thus environmental impact) of English NLP models, knowledge distillation (KD), for its impact on fairness. In this case study, we evaluate the effect of important KD factors, including layer and dimensionality reduction, with respect to: (a) performance on the distillation task (natural language inference and semantic similarity prediction), and (b) multiple measures and dimensions of stereotypical bias (e.g., gender bias measured via the Word Embedding Association Test). Our results lead us to clarify current assumptions regarding the effect of KD on unfair bias: contrary to other findings, we show that KD can actually decrease model fairness.
MedImageInsight: An Open-Source Embedding Model for General Domain Medical Imaging
In this work, we present MedImageInsight, an open-source medical imaging embedding model. MedImageInsight is trained on medical images with associated text and labels across a diverse collection of domains, including X-Ray, CT, MRI, dermoscopy, OCT, fundus photography, ultrasound, histopathology, and mammography. Rigorous evaluations demonstrate MedImageInsight's ability to achieve state-of-the-art (SOTA) or human expert level performance across classification, image-image search, and fine-tuning tasks. Specifically, on public datasets, MedImageInsight achieves SOTA in CT 3D medical image retrieval, as well as SOTA in disease classification and search for chest X-ray, dermatology, and OCT imaging. Furthermore, MedImageInsight achieves human expert performance in bone age estimation (on both public and partner data), as well as AUC above 0.9 in most other domains. When paired with a text decoder, MedImageInsight achieves near SOTA level single image report findings generation with less than 10\% the parameters of other models. Compared to fine-tuning GPT-4o with only MIMIC-CXR data for the same task, MedImageInsight outperforms in clinical metrics, but underperforms on lexical metrics where GPT-4o sets a new SOTA. Importantly for regulatory purposes, MedImageInsight can generate ROC curves, adjust sensitivity and specificity based on clinical need, and provide evidence-based decision support through image-image search (which can also enable retrieval augmented generation). In an independent clinical evaluation of image-image search in chest X-ray, MedImageInsight outperformed every other publicly available foundation model evaluated by large margins (over 6 points AUC), and significantly outperformed other models in terms of AI fairness (across age and gender). We hope releasing MedImageInsight will help enhance collective progress in medical imaging AI research and development.
Improving Fairness using Vision-Language Driven Image Augmentation
Fairness is crucial when training a deep-learning discriminative model, especially in the facial domain. Models tend to correlate specific characteristics (such as age and skin color) with unrelated attributes (downstream tasks), resulting in biases which do not correspond to reality. It is common knowledge that these correlations are present in the data and are then transferred to the models during training. This paper proposes a method to mitigate these correlations to improve fairness. To do so, we learn interpretable and meaningful paths lying in the semantic space of a pre-trained diffusion model (DiffAE) -- such paths being supervised by contrastive text dipoles. That is, we learn to edit protected characteristics (age and skin color). These paths are then applied to augment images to improve the fairness of a given dataset. We test the proposed method on CelebA-HQ and UTKFace on several downstream tasks with age and skin color as protected characteristics. As a proxy for fairness, we compute the difference in accuracy with respect to the protected characteristics. Quantitative results show how the augmented images help the model improve the overall accuracy, the aforementioned metric, and the disparity of equal opportunity. Code is available at: https://github.com/Moreno98/Vision-Language-Bias-Control.
Learning Certified Individually Fair Representations
Fair representation learning provides an effective way of enforcing fairness constraints without compromising utility for downstream users. A desirable family of such fairness constraints, each requiring similar treatment for similar individuals, is known as individual fairness. In this work, we introduce the first method that enables data consumers to obtain certificates of individual fairness for existing and new data points. The key idea is to map similar individuals to close latent representations and leverage this latent proximity to certify individual fairness. That is, our method enables the data producer to learn and certify a representation where for a data point all similar individuals are at ell_infty-distance at most epsilon, thus allowing data consumers to certify individual fairness by proving epsilon-robustness of their classifier. Our experimental evaluation on five real-world datasets and several fairness constraints demonstrates the expressivity and scalability of our approach.
A Large-scale Empirical Study on Improving the Fairness of Deep Learning Models
Fairness has been a critical issue that affects the adoption of deep learning models in real practice. To improve model fairness, many existing methods have been proposed and evaluated to be effective in their own contexts. However, there is still no systematic evaluation among them for a comprehensive comparison under the same context, which makes it hard to understand the performance distinction among them, hindering the research progress and practical adoption of them. To fill this gap, this paper endeavours to conduct the first large-scale empirical study to comprehensively compare the performance of existing state-of-the-art fairness improving techniques. Specifically, we target the widely-used application scenario of image classification, and utilized three different datasets and five commonly-used performance metrics to assess in total 13 methods from diverse categories. Our findings reveal substantial variations in the performance of each method across different datasets and sensitive attributes, indicating over-fitting on specific datasets by many existing methods. Furthermore, different fairness evaluation metrics, due to their distinct focuses, yield significantly different assessment results. Overall, we observe that pre-processing methods and in-processing methods outperform post-processing methods, with pre-processing methods exhibiting the best performance. Our empirical study offers comprehensive recommendations for enhancing fairness in deep learning models. We approach the problem from multiple dimensions, aiming to provide a uniform evaluation platform and inspire researchers to explore more effective fairness solutions via a set of implications.
Fair Attribute Classification through Latent Space De-biasing
Fairness in visual recognition is becoming a prominent and critical topic of discussion as recognition systems are deployed at scale in the real world. Models trained from data in which target labels are correlated with protected attributes (e.g., gender, race) are known to learn and exploit those correlations. In this work, we introduce a method for training accurate target classifiers while mitigating biases that stem from these correlations. We use GANs to generate realistic-looking images, and perturb these images in the underlying latent space to generate training data that is balanced for each protected attribute. We augment the original dataset with this perturbed generated data, and empirically demonstrate that target classifiers trained on the augmented dataset exhibit a number of both quantitative and qualitative benefits. We conduct a thorough evaluation across multiple target labels and protected attributes in the CelebA dataset, and provide an in-depth analysis and comparison to existing literature in the space.
Latent Space Smoothing for Individually Fair Representations
Fair representation learning transforms user data into a representation that ensures fairness and utility regardless of the downstream application. However, learning individually fair representations, i.e., guaranteeing that similar individuals are treated similarly, remains challenging in high-dimensional settings such as computer vision. In this work, we introduce LASSI, the first representation learning method for certifying individual fairness of high-dimensional data. Our key insight is to leverage recent advances in generative modeling to capture the set of similar individuals in the generative latent space. This enables us to learn individually fair representations that map similar individuals close together by using adversarial training to minimize the distance between their representations. Finally, we employ randomized smoothing to provably map similar individuals close together, in turn ensuring that local robustness verification of the downstream application results in end-to-end fairness certification. Our experimental evaluation on challenging real-world image data demonstrates that our method increases certified individual fairness by up to 90% without significantly affecting task utility.
Improving Fair Training under Correlation Shifts
Model fairness is an essential element for Trustworthy AI. While many techniques for model fairness have been proposed, most of them assume that the training and deployment data distributions are identical, which is often not true in practice. In particular, when the bias between labels and sensitive groups changes, the fairness of the trained model is directly influenced and can worsen. We make two contributions for solving this problem. First, we analytically show that existing in-processing fair algorithms have fundamental limits in accuracy and group fairness. We introduce the notion of correlation shifts, which can explicitly capture the change of the above bias. Second, we propose a novel pre-processing step that samples the input data to reduce correlation shifts and thus enables the in-processing approaches to overcome their limitations. We formulate an optimization problem for adjusting the data ratio among labels and sensitive groups to reflect the shifted correlation. A key benefit of our approach lies in decoupling the roles of pre- and in-processing approaches: correlation adjustment via pre-processing and unfairness mitigation on the processed data via in-processing. Experiments show that our framework effectively improves existing in-processing fair algorithms w.r.t. accuracy and fairness, both on synthetic and real datasets.
fairret: a Framework for Differentiable Fairness Regularization Terms
Current tools for machine learning fairness only admit a limited range of fairness definitions and have seen little integration with automatic differentiation libraries, despite the central role these libraries play in modern machine learning pipelines. We introduce a framework of fairness regularization terms (fairrets) which quantify bias as modular objectives that are easily integrated in automatic differentiation pipelines. By employing a general definition of fairness in terms of linear-fractional statistics, a wide class of fairrets can be computed efficiently. Experiments show the behavior of their gradients and their utility in enforcing fairness with minimal loss of predictive power compared to baselines. Our contribution includes a PyTorch implementation of the fairret framework.
Dbias: Detecting biases and ensuring Fairness in news articles
Because of the increasing use of data-centric systems and algorithms in machine learning, the topic of fairness is receiving a lot of attention in the academic and broader literature. This paper introduces Dbias (https://pypi.org/project/Dbias/), an open-source Python package for ensuring fairness in news articles. Dbias can take any text to determine if it is biased. Then, it detects biased words in the text, masks them, and suggests a set of sentences with new words that are bias-free or at least less biased. We conduct extensive experiments to assess the performance of Dbias. To see how well our approach works, we compare it to the existing fairness models. We also test the individual components of Dbias to see how effective they are. The experimental results show that Dbias outperforms all the baselines in terms of accuracy and fairness. We make this package (Dbias) as publicly available for the developers and practitioners to mitigate biases in textual data (such as news articles), as well as to encourage extension of this work.
Fair Diffusion: Instructing Text-to-Image Generation Models on Fairness
Generative AI models have recently achieved astonishing results in quality and are consequently employed in a fast-growing number of applications. However, since they are highly data-driven, relying on billion-sized datasets randomly scraped from the internet, they also suffer from degenerated and biased human behavior, as we demonstrate. In fact, they may even reinforce such biases. To not only uncover but also combat these undesired effects, we present a novel strategy, called Fair Diffusion, to attenuate biases after the deployment of generative text-to-image models. Specifically, we demonstrate shifting a bias, based on human instructions, in any direction yielding arbitrarily new proportions for, e.g., identity groups. As our empirical evaluation demonstrates, this introduced control enables instructing generative image models on fairness, with no data filtering and additional training required.
FairJob: A Real-World Dataset for Fairness in Online Systems
We introduce a fairness-aware dataset for job recommendation in advertising, designed to foster research in algorithmic fairness within real-world scenarios. It was collected and prepared to comply with privacy standards and business confidentiality. An additional challenge is the lack of access to protected user attributes such as gender, for which we propose a solution to obtain a proxy estimate. Despite being anonymized and including a proxy for a sensitive attribute, our dataset preserves predictive power and maintains a realistic and challenging benchmark. This dataset addresses a significant gap in the availability of fairness-focused resources for high-impact domains like advertising -- the actual impact being having access or not to precious employment opportunities, where balancing fairness and utility is a common industrial challenge. We also explore various stages in the advertising process where unfairness can occur and introduce a method to compute a fair utility metric for the job recommendations in online systems case from a biased dataset. Experimental evaluations of bias mitigation techniques on the released dataset demonstrate potential improvements in fairness and the associated trade-offs with utility.
Fairness and Bias Mitigation in Computer Vision: A Survey
Computer vision systems have witnessed rapid progress over the past two decades due to multiple advances in the field. As these systems are increasingly being deployed in high-stakes real-world applications, there is a dire need to ensure that they do not propagate or amplify any discriminatory tendencies in historical or human-curated data or inadvertently learn biases from spurious correlations. This paper presents a comprehensive survey on fairness that summarizes and sheds light on ongoing trends and successes in the context of computer vision. The topics we discuss include 1) The origin and technical definitions of fairness drawn from the wider fair machine learning literature and adjacent disciplines. 2) Work that sought to discover and analyze biases in computer vision systems. 3) A summary of methods proposed to mitigate bias in computer vision systems in recent years. 4) A comprehensive summary of resources and datasets produced by researchers to measure, analyze, and mitigate bias and enhance fairness. 5) Discussion of the field's success, continuing trends in the context of multimodal foundation and generative models, and gaps that still need to be addressed. The presented characterization should help researchers understand the importance of identifying and mitigating bias in computer vision and the state of the field and identify potential directions for future research.
Social Bias Probing: Fairness Benchmarking for Language Models
While the impact of social biases in language models has been recognized, prior methods for bias evaluation have been limited to binary association tests on small datasets, limiting our understanding of bias complexities. This paper proposes a novel framework for probing language models for social biases by assessing disparate treatment, which involves treating individuals differently according to their affiliation with a sensitive demographic group. We curate SoFa, a large-scale benchmark designed to address the limitations of existing fairness collections. SoFa expands the analysis beyond the binary comparison of stereotypical versus anti-stereotypical identities to include a diverse range of identities and stereotypes. Comparing our methodology with existing benchmarks, we reveal that biases within language models are more nuanced than acknowledged, indicating a broader scope of encoded biases than previously recognized. Benchmarking LMs on SoFa, we expose how identities expressing different religions lead to the most pronounced disparate treatments across all models. Finally, our findings indicate that real-life adversities faced by various groups such as women and people with disabilities are mirrored in the behavior of these models.
Towards Debiasing Sentence Representations
As natural language processing methods are increasingly deployed in real-world scenarios such as healthcare, legal systems, and social science, it becomes necessary to recognize the role they potentially play in shaping social biases and stereotypes. Previous work has revealed the presence of social biases in widely used word embeddings involving gender, race, religion, and other social constructs. While some methods were proposed to debias these word-level embeddings, there is a need to perform debiasing at the sentence-level given the recent shift towards new contextualized sentence representations such as ELMo and BERT. In this paper, we investigate the presence of social biases in sentence-level representations and propose a new method, Sent-Debias, to reduce these biases. We show that Sent-Debias is effective in removing biases, and at the same time, preserves performance on sentence-level downstream tasks such as sentiment analysis, linguistic acceptability, and natural language understanding. We hope that our work will inspire future research on characterizing and removing social biases from widely adopted sentence representations for fairer NLP.
Improving Fairness in Deepfake Detection
Despite the development of effective deepfake detectors in recent years, recent studies have demonstrated that biases in the data used to train these detectors can lead to disparities in detection accuracy across different races and genders. This can result in different groups being unfairly targeted or excluded from detection, allowing undetected deepfakes to manipulate public opinion and erode trust in a deepfake detection model. While existing studies have focused on evaluating fairness of deepfake detectors, to the best of our knowledge, no method has been developed to encourage fairness in deepfake detection at the algorithm level. In this work, we make the first attempt to improve deepfake detection fairness by proposing novel loss functions that handle both the setting where demographic information (eg, annotations of race and gender) is available as well as the case where this information is absent. Fundamentally, both approaches can be used to convert many existing deepfake detectors into ones that encourages fairness. Extensive experiments on four deepfake datasets and five deepfake detectors demonstrate the effectiveness and flexibility of our approach in improving deepfake detection fairness. Our code is available at https://github.com/littlejuyan/DF_Fairness.
FARE: Provably Fair Representation Learning with Practical Certificates
Fair representation learning (FRL) is a popular class of methods aiming to produce fair classifiers via data preprocessing. Recent regulatory directives stress the need for FRL methods that provide practical certificates, i.e., provable upper bounds on the unfairness of any downstream classifier trained on preprocessed data, which directly provides assurance in a practical scenario. Creating such FRL methods is an important challenge that remains unsolved. In this work, we address that challenge and introduce FARE (Fairness with Restricted Encoders), the first FRL method with practical fairness certificates. FARE is based on our key insight that restricting the representation space of the encoder enables the derivation of practical guarantees, while still permitting favorable accuracy-fairness tradeoffs for suitable instantiations, such as one we propose based on fair trees. To produce a practical certificate, we develop and apply a statistical procedure that computes a finite sample high-confidence upper bound on the unfairness of any downstream classifier trained on FARE embeddings. In our comprehensive experimental evaluation, we demonstrate that FARE produces practical certificates that are tight and often even comparable with purely empirical results obtained by prior methods, which establishes the practical value of our approach.
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings
The blind application of machine learning runs the risk of amplifying biases present in data. Such a danger is facing us with word embedding, a popular framework to represent text data as vectors which has been used in many machine learning and natural language processing tasks. We show that even word embeddings trained on Google News articles exhibit female/male gender stereotypes to a disturbing extent. This raises concerns because their widespread use, as we describe, often tends to amplify these biases. Geometrically, gender bias is first shown to be captured by a direction in the word embedding. Second, gender neutral words are shown to be linearly separable from gender definition words in the word embedding. Using these properties, we provide a methodology for modifying an embedding to remove gender stereotypes, such as the association between between the words receptionist and female, while maintaining desired associations such as between the words queen and female. We define metrics to quantify both direct and indirect gender biases in embeddings, and develop algorithms to "debias" the embedding. Using crowd-worker evaluation as well as standard benchmarks, we empirically demonstrate that our algorithms significantly reduce gender bias in embeddings while preserving the its useful properties such as the ability to cluster related concepts and to solve analogy tasks. The resulting embeddings can be used in applications without amplifying gender bias.
FFB: A Fair Fairness Benchmark for In-Processing Group Fairness Methods
This paper introduces the Fair Fairness Benchmark (FFB), a benchmarking framework for in-processing group fairness methods. Ensuring fairness in machine learning is critical for ethical and legal compliance. However, there exist challenges in comparing and developing of fairness methods due to inconsistencies in experimental settings, lack of accessible algorithmic implementations, and limited extensibility of current fairness packages and tools. To address these issues, we introduce an open-source, standardized benchmark for evaluating in-processing group fairness methods and provide a comprehensive analysis of state-of-the-art methods to ensure different notions of group fairness. This work offers the following key contributions: the provision of flexible, extensible, minimalistic, and research-oriented open-source code; the establishment of unified fairness method benchmarking pipelines; and extensive benchmarking, which yields key insights from 45,079 experiments. We believe our work will significantly facilitate the growth and development of the fairness research community. The benchmark, including code and running logs, is available at https://github.com/ahxt/fair_fairness_benchmark
FairVis: Visual Analytics for Discovering Intersectional Bias in Machine Learning
The growing capability and accessibility of machine learning has led to its application to many real-world domains and data about people. Despite the benefits algorithmic systems may bring, models can reflect, inject, or exacerbate implicit and explicit societal biases into their outputs, disadvantaging certain demographic subgroups. Discovering which biases a machine learning model has introduced is a great challenge, due to the numerous definitions of fairness and the large number of potentially impacted subgroups. We present FairVis, a mixed-initiative visual analytics system that integrates a novel subgroup discovery technique for users to audit the fairness of machine learning models. Through FairVis, users can apply domain knowledge to generate and investigate known subgroups, and explore suggested and similar subgroups. FairVis' coordinated views enable users to explore a high-level overview of subgroup performance and subsequently drill down into detailed investigation of specific subgroups. We show how FairVis helps to discover biases in two real datasets used in predicting income and recidivism. As a visual analytics system devoted to discovering bias in machine learning, FairVis demonstrates how interactive visualization may help data scientists and the general public understand and create more equitable algorithmic systems.
FairTune: Optimizing Parameter Efficient Fine Tuning for Fairness in Medical Image Analysis
Training models with robust group fairness properties is crucial in ethically sensitive application areas such as medical diagnosis. Despite the growing body of work aiming to minimise demographic bias in AI, this problem remains challenging. A key reason for this challenge is the fairness generalisation gap: High-capacity deep learning models can fit all training data nearly perfectly, and thus also exhibit perfect fairness during training. In this case, bias emerges only during testing when generalisation performance differs across subgroups. This motivates us to take a bi-level optimisation perspective on fair learning: Optimising the learning strategy based on validation fairness. Specifically, we consider the highly effective workflow of adapting pre-trained models to downstream medical imaging tasks using parameter-efficient fine-tuning (PEFT) techniques. There is a trade-off between updating more parameters, enabling a better fit to the task of interest vs. fewer parameters, potentially reducing the generalisation gap. To manage this tradeoff, we propose FairTune, a framework to optimise the choice of PEFT parameters with respect to fairness. We demonstrate empirically that FairTune leads to improved fairness on a range of medical imaging datasets. The code is available at https://github.com/Raman1121/FairTune
NBIAS: A Natural Language Processing Framework for Bias Identification in Text
Bias in textual data can lead to skewed interpretations and outcomes when the data is used. These biases could perpetuate stereotypes, discrimination, or other forms of unfair treatment. An algorithm trained on biased data may end up making decisions that disproportionately impact a certain group of people. Therefore, it is crucial to detect and remove these biases to ensure the fair and ethical use of data. To this end, we develop a comprehensive and robust framework NBIAS that consists of four main layers: data, corpus construction, model development and an evaluation layer. The dataset is constructed by collecting diverse data from various domains, including social media, healthcare, and job hiring portals. As such, we applied a transformer-based token classification model that is able to identify bias words/ phrases through a unique named entity BIAS. In the evaluation procedure, we incorporate a blend of quantitative and qualitative measures to gauge the effectiveness of our models. We achieve accuracy improvements ranging from 1% to 8% compared to baselines. We are also able to generate a robust understanding of the model functioning. The proposed approach is applicable to a variety of biases and contributes to the fair and ethical use of textual data.
Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings
Online texts -- across genres, registers, domains, and styles -- are riddled with human stereotypes, expressed in overt or subtle ways. Word embeddings, trained on these texts, perpetuate and amplify these stereotypes, and propagate biases to machine learning models that use word embeddings as features. In this work, we propose a method to debias word embeddings in multiclass settings such as race and religion, extending the work of (Bolukbasi et al., 2016) from the binary setting, such as binary gender. Next, we propose a novel methodology for the evaluation of multiclass debiasing. We demonstrate that our multiclass debiasing is robust and maintains the efficacy in standard NLP tasks.
Mitigating stereotypical biases in text to image generative systems
State-of-the-art generative text-to-image models are known to exhibit social biases and over-represent certain groups like people of perceived lighter skin tones and men in their outcomes. In this work, we propose a method to mitigate such biases and ensure that the outcomes are fair across different groups of people. We do this by finetuning text-to-image models on synthetic data that varies in perceived skin tones and genders constructed from diverse text prompts. These text prompts are constructed from multiplicative combinations of ethnicities, genders, professions, age groups, and so on, resulting in diverse synthetic data. Our diversity finetuned (DFT) model improves the group fairness metric by 150% for perceived skin tone and 97.7% for perceived gender. Compared to baselines, DFT models generate more people with perceived darker skin tone and more women. To foster open research, we will release all text prompts and code to generate training images.
Assessing Social and Intersectional Biases in Contextualized Word Representations
Social bias in machine learning has drawn significant attention, with work ranging from demonstrations of bias in a multitude of applications, curating definitions of fairness for different contexts, to developing algorithms to mitigate bias. In natural language processing, gender bias has been shown to exist in context-free word embeddings. Recently, contextual word representations have outperformed word embeddings in several downstream NLP tasks. These word representations are conditioned on their context within a sentence, and can also be used to encode the entire sentence. In this paper, we analyze the extent to which state-of-the-art models for contextual word representations, such as BERT and GPT-2, encode biases with respect to gender, race, and intersectional identities. Towards this, we propose assessing bias at the contextual word level. This novel approach captures the contextual effects of bias missing in context-free word embeddings, yet avoids confounding effects that underestimate bias at the sentence encoding level. We demonstrate evidence of bias at the corpus level, find varying evidence of bias in embedding association tests, show in particular that racial bias is strongly encoded in contextual word models, and observe that bias effects for intersectional minorities are exacerbated beyond their constituent minority identities. Further, evaluating bias effects at the contextual word level captures biases that are not captured at the sentence level, confirming the need for our novel approach.
On the Impact of Data Quality on Image Classification Fairness
With the proliferation of algorithmic decision-making, increased scrutiny has been placed on these systems. This paper explores the relationship between the quality of the training data and the overall fairness of the models trained with such data in the context of supervised classification. We measure key fairness metrics across a range of algorithms over multiple image classification datasets that have a varying level of noise in both the labels and the training data itself. We describe noise in the labels as inaccuracies in the labelling of the data in the training set and noise in the data as distortions in the data, also in the training set. By adding noise to the original datasets, we can explore the relationship between the quality of the training data and the fairness of the output of the models trained on that data.
Fairness Definitions in Language Models Explained
Language Models (LMs) have demonstrated exceptional performance across various Natural Language Processing (NLP) tasks. Despite these advancements, LMs can inherit and amplify societal biases related to sensitive attributes such as gender and race, limiting their adoption in real-world applications. Therefore, fairness has been extensively explored in LMs, leading to the proposal of various fairness notions. However, the lack of clear agreement on which fairness definition to apply in specific contexts (e.g., medium-sized LMs versus large-sized LMs) and the complexity of understanding the distinctions between these definitions can create confusion and impede further progress. To this end, this paper proposes a systematic survey that clarifies the definitions of fairness as they apply to LMs. Specifically, we begin with a brief introduction to LMs and fairness in LMs, followed by a comprehensive, up-to-date overview of existing fairness notions in LMs and the introduction of a novel taxonomy that categorizes these concepts based on their foundational principles and operational distinctions. We further illustrate each definition through experiments, showcasing their practical implications and outcomes. Finally, we discuss current research challenges and open questions, aiming to foster innovative ideas and advance the field. The implementation and additional resources are publicly available at https://github.com/LavinWong/Fairness-in-Large-Language-Models/tree/main/definitions.
FairLay-ML: Intuitive Remedies for Unfairness in Data-Driven Social-Critical Algorithms
This thesis explores open-sourced machine learning (ML) model explanation tools to understand whether these tools can allow a layman to visualize, understand, and suggest intuitive remedies to unfairness in ML-based decision-support systems. Machine learning models trained on datasets biased against minority groups are increasingly used to guide life-altering social decisions, prompting the urgent need to study their logic for unfairness. Due to this problem's impact on vast populations of the general public, it is critical for the layperson -- not just subject matter experts in social justice or machine learning experts -- to understand the nature of unfairness within these algorithms and the potential trade-offs. Existing research on fairness in machine learning focuses mostly on the mathematical definitions and tools to understand and remedy unfair models, with some directly citing user-interactive tools as necessary for future work. This thesis presents FairLay-ML, a proof-of-concept GUI integrating some of the most promising tools to provide intuitive explanations for unfair logic in ML models by integrating existing research tools (e.g. Local Interpretable Model-Agnostic Explanations) with existing ML-focused GUI (e.g. Python Streamlit). We test FairLay-ML using models of various accuracy and fairness generated by an unfairness detector tool, Parfait-ML, and validate our results using Themis. Our study finds that the technology stack used for FairLay-ML makes it easy to install and provides real-time black-box explanations of pre-trained models to users. Furthermore, the explanations provided translate to actionable remedies.
On the Fairness ROAD: Robust Optimization for Adversarial Debiasing
In the field of algorithmic fairness, significant attention has been put on group fairness criteria, such as Demographic Parity and Equalized Odds. Nevertheless, these objectives, measured as global averages, have raised concerns about persistent local disparities between sensitive groups. In this work, we address the problem of local fairness, which ensures that the predictor is unbiased not only in terms of expectations over the whole population, but also within any subregion of the feature space, unknown at training time. To enforce this objective, we introduce ROAD, a novel approach that leverages the Distributionally Robust Optimization (DRO) framework within a fair adversarial learning objective, where an adversary tries to infer the sensitive attribute from the predictions. Using an instance-level re-weighting strategy, ROAD is designed to prioritize inputs that are likely to be locally unfair, i.e. where the adversary faces the least difficulty in reconstructing the sensitive attribute. Numerical experiments demonstrate the effectiveness of our method: it achieves Pareto dominance with respect to local fairness and accuracy for a given global fairness level across three standard datasets, and also enhances fairness generalization under distribution shift.
FairSeg: A Large-Scale Medical Image Segmentation Dataset for Fairness Learning Using Segment Anything Model with Fair Error-Bound Scaling
Fairness in artificial intelligence models has gained significantly more attention in recent years, especially in the area of medicine, as fairness in medical models is critical to people's well-being and lives. High-quality medical fairness datasets are needed to promote fairness learning research. Existing medical fairness datasets are all for classification tasks, and no fairness datasets are available for medical segmentation, while medical segmentation is an equally important clinical task as classifications, which can provide detailed spatial information on organ abnormalities ready to be assessed by clinicians. In this paper, we propose the first fairness dataset for medical segmentation named Harvard-FairSeg with 10,000 subject samples. In addition, we propose a fair error-bound scaling approach to reweight the loss function with the upper error-bound in each identity group, using the segment anything model (SAM). We anticipate that the segmentation performance equity can be improved by explicitly tackling the hard cases with high training errors in each identity group. To facilitate fair comparisons, we utilize a novel equity-scaled segmentation performance metric to compare segmentation metrics in the context of fairness, such as the equity-scaled Dice coefficient. Through comprehensive experiments, we demonstrate that our fair error-bound scaling approach either has superior or comparable fairness performance to the state-of-the-art fairness learning models. The dataset and code are publicly accessible via https://ophai.hms.harvard.edu/datasets/harvard-fairseg10k.
Learning Antidote Data to Individual Unfairness
Fairness is essential for machine learning systems deployed in high-stake applications. Among all fairness notions, individual fairness, deriving from a consensus that `similar individuals should be treated similarly,' is a vital notion to describe fair treatment for individual cases. Previous studies typically characterize individual fairness as a prediction-invariant problem when perturbing sensitive attributes on samples, and solve it by Distributionally Robust Optimization (DRO) paradigm. However, such adversarial perturbations along a direction covering sensitive information used in DRO do not consider the inherent feature correlations or innate data constraints, therefore could mislead the model to optimize at off-manifold and unrealistic samples. In light of this drawback, in this paper, we propose to learn and generate antidote data that approximately follows the data distribution to remedy individual unfairness. These generated on-manifold antidote data can be used through a generic optimization procedure along with original training data, resulting in a pure pre-processing approach to individual unfairness, or can also fit well with the in-processing DRO paradigm. Through extensive experiments on multiple tabular datasets, we demonstrate our method resists individual unfairness at a minimal or zero cost to predictive utility compared to baselines.
A Survey on Fairness in Large Language Models
Large language models (LLMs) have shown powerful performance and development prospect and are widely deployed in the real world. However, LLMs can capture social biases from unprocessed training data and propagate the biases to downstream tasks. Unfair LLM systems have undesirable social impacts and potential harms. In this paper, we provide a comprehensive review of related research on fairness in LLMs. First, for medium-scale LLMs, we introduce evaluation metrics and debiasing methods from the perspectives of intrinsic bias and extrinsic bias, respectively. Then, for large-scale LLMs, we introduce recent fairness research, including fairness evaluation, reasons for bias, and debiasing methods. Finally, we discuss and provide insight on the challenges and future directions for the development of fairness in LLMs.
FairPIVARA: Reducing and Assessing Biases in CLIP-Based Multimodal Models
Despite significant advancements and pervasive use of vision-language models, a paucity of studies has addressed their ethical implications. These models typically require extensive training data, often from hastily reviewed text and image datasets, leading to highly imbalanced datasets and ethical concerns. Additionally, models initially trained in English are frequently fine-tuned for other languages, such as the CLIP model, which can be expanded with more data to enhance capabilities but can add new biases. The CAPIVARA, a CLIP-based model adapted to Portuguese, has shown strong performance in zero-shot tasks. In this paper, we evaluate four different types of discriminatory practices within visual-language models and introduce FairPIVARA, a method to reduce them by removing the most affected dimensions of feature embeddings. The application of FairPIVARA has led to a significant reduction of up to 98% in observed biases while promoting a more balanced word distribution within the model. Our model and code are available at: https://github.com/hiaac-nlp/FairPIVARA.
Causal Fairness under Unobserved Confounding: A Neural Sensitivity Framework
Fairness for machine learning predictions is widely required in practice for legal, ethical, and societal reasons. Existing work typically focuses on settings without unobserved confounding, even though unobserved confounding can lead to severe violations of causal fairness and, thus, unfair predictions. In this work, we analyze the sensitivity of causal fairness to unobserved confounding. Our contributions are three-fold. First, we derive bounds for causal fairness metrics under different sources of unobserved confounding. This enables practitioners to examine the sensitivity of their machine learning models to unobserved confounding in fairness-critical applications. Second, we propose a novel neural framework for learning fair predictions, which allows us to offer worst-case guarantees of the extent to which causal fairness can be violated due to unobserved confounding. Third, we demonstrate the effectiveness of our framework in a series of experiments, including a real-world case study about predicting prison sentences. To the best of our knowledge, ours is the first work to study causal fairness under unobserved confounding. To this end, our work is of direct practical value as a refutation strategy to ensure the fairness of predictions in high-stakes applications.
FEAMOE: Fair, Explainable and Adaptive Mixture of Experts
Three key properties that are desired of trustworthy machine learning models deployed in high-stakes environments are fairness, explainability, and an ability to account for various kinds of "drift". While drifts in model accuracy, for example due to covariate shift, have been widely investigated, drifts in fairness metrics over time remain largely unexplored. In this paper, we propose FEAMOE, a novel "mixture-of-experts" inspired framework aimed at learning fairer, more explainable/interpretable models that can also rapidly adjust to drifts in both the accuracy and the fairness of a classifier. We illustrate our framework for three popular fairness measures and demonstrate how drift can be handled with respect to these fairness constraints. Experiments on multiple datasets show that our framework as applied to a mixture of linear experts is able to perform comparably to neural networks in terms of accuracy while producing fairer models. We then use the large-scale HMDA dataset and show that while various models trained on HMDA demonstrate drift with respect to both accuracy and fairness, FEAMOE can ably handle these drifts with respect to all the considered fairness measures and maintain model accuracy as well. We also prove that the proposed framework allows for producing fast Shapley value explanations, which makes computationally efficient feature attribution based explanations of model decisions readily available via FEAMOE.
Measuring Fairness of Text Classifiers via Prediction Sensitivity
With the rapid growth in language processing applications, fairness has emerged as an important consideration in data-driven solutions. Although various fairness definitions have been explored in the recent literature, there is lack of consensus on which metrics most accurately reflect the fairness of a system. In this work, we propose a new formulation : ACCUMULATED PREDICTION SENSITIVITY, which measures fairness in machine learning models based on the model's prediction sensitivity to perturbations in input features. The metric attempts to quantify the extent to which a single prediction depends on a protected attribute, where the protected attribute encodes the membership status of an individual in a protected group. We show that the metric can be theoretically linked with a specific notion of group fairness (statistical parity) and individual fairness. It also correlates well with humans' perception of fairness. We conduct experiments on two text classification datasets : JIGSAW TOXICITY, and BIAS IN BIOS, and evaluate the correlations between metrics and manual annotations on whether the model produced a fair outcome. We observe that the proposed fairness metric based on prediction sensitivity is statistically significantly more correlated with human annotation than the existing counterfactual fairness metric.
Pursuing Counterfactual Fairness via Sequential Autoencoder Across Domains
Recognizing the prevalence of domain shift as a common challenge in machine learning, various domain generalization (DG) techniques have been developed to enhance the performance of machine learning systems when dealing with out-of-distribution (OOD) data. Furthermore, in real-world scenarios, data distributions can gradually change across a sequence of sequential domains. While current methodologies primarily focus on improving model effectiveness within these new domains, they often overlook fairness issues throughout the learning process. In response, we introduce an innovative framework called Counterfactual Fairness-Aware Domain Generalization with Sequential Autoencoder (CDSAE). This approach effectively separates environmental information and sensitive attributes from the embedded representation of classification features. This concurrent separation not only greatly improves model generalization across diverse and unfamiliar domains but also effectively addresses challenges related to unfair classification. Our strategy is rooted in the principles of causal inference to tackle these dual issues. To examine the intricate relationship between semantic information, sensitive attributes, and environmental cues, we systematically categorize exogenous uncertainty factors into four latent variables: 1) semantic information influenced by sensitive attributes, 2) semantic information unaffected by sensitive attributes, 3) environmental cues influenced by sensitive attributes, and 4) environmental cues unaffected by sensitive attributes. By incorporating fairness regularization, we exclusively employ semantic information for classification purposes. Empirical validation on synthetic and real-world datasets substantiates the effectiveness of our approach, demonstrating improved accuracy levels while ensuring the preservation of fairness in the evolving landscape of continuous domains.
Towards Poisoning Fair Representations
Fair machine learning seeks to mitigate model prediction bias against certain demographic subgroups such as elder and female. Recently, fair representation learning (FRL) trained by deep neural networks has demonstrated superior performance, whereby representations containing no demographic information are inferred from the data and then used as the input to classification or other downstream tasks. Despite the development of FRL methods, their vulnerability under data poisoning attack, a popular protocol to benchmark model robustness under adversarial scenarios, is under-explored. Data poisoning attacks have been developed for classical fair machine learning methods which incorporate fairness constraints into shallow-model classifiers. Nonetheless, these attacks fall short in FRL due to notably different fairness goals and model architectures. This work proposes the first data poisoning framework attacking FRL. We induce the model to output unfair representations that contain as much demographic information as possible by injecting carefully crafted poisoning samples into the training data. This attack entails a prohibitive bilevel optimization, wherefore an effective approximated solution is proposed. A theoretical analysis on the needed number of poisoning samples is derived and sheds light on defending against the attack. Experiments on benchmark fairness datasets and state-of-the-art fair representation learning models demonstrate the superiority of our attack.
FACET: Fairness in Computer Vision Evaluation Benchmark
Computer vision models have known performance disparities across attributes such as gender and skin tone. This means during tasks such as classification and detection, model performance differs for certain classes based on the demographics of the people in the image. These disparities have been shown to exist, but until now there has not been a unified approach to measure these differences for common use-cases of computer vision models. We present a new benchmark named FACET (FAirness in Computer Vision EvaluaTion), a large, publicly available evaluation set of 32k images for some of the most common vision tasks - image classification, object detection and segmentation. For every image in FACET, we hired expert reviewers to manually annotate person-related attributes such as perceived skin tone and hair type, manually draw bounding boxes and label fine-grained person-related classes such as disk jockey or guitarist. In addition, we use FACET to benchmark state-of-the-art vision models and present a deeper understanding of potential performance disparities and challenges across sensitive demographic attributes. With the exhaustive annotations collected, we probe models using single demographics attributes as well as multiple attributes using an intersectional approach (e.g. hair color and perceived skin tone). Our results show that classification, detection, segmentation, and visual grounding models exhibit performance disparities across demographic attributes and intersections of attributes. These harms suggest that not all people represented in datasets receive fair and equitable treatment in these vision tasks. We hope current and future results using our benchmark will contribute to fairer, more robust vision models. FACET is available publicly at https://facet.metademolab.com/
FairTTTS: A Tree Test Time Simulation Method for Fairness-Aware Classification
Algorithmic decision-making has become deeply ingrained in many domains, yet biases in machine learning models can still produce discriminatory outcomes, often harming unprivileged groups. Achieving fair classification is inherently challenging, requiring a careful balance between predictive performance and ethical considerations. We present FairTTTS, a novel post-processing bias mitigation method inspired by the Tree Test Time Simulation (TTTS) method. Originally developed to enhance accuracy and robustness against adversarial inputs through probabilistic decision-path adjustments, TTTS serves as the foundation for FairTTTS. By building on this accuracy-enhancing technique, FairTTTS mitigates bias and improves predictive performance. FairTTTS uses a distance-based heuristic to adjust decisions at protected attribute nodes, ensuring fairness for unprivileged samples. This fairness-oriented adjustment occurs as a post-processing step, allowing FairTTTS to be applied to pre-trained models, diverse datasets, and various fairness metrics without retraining. Extensive evaluation on seven benchmark datasets shows that FairTTTS outperforms traditional methods in fairness improvement, achieving a 20.96% average increase over the baseline compared to 18.78% for related work, and further enhances accuracy by 0.55%. In contrast, competing methods typically reduce accuracy by 0.42%. These results confirm that FairTTTS effectively promotes more equitable decision-making while simultaneously improving predictive performance.
Perturbation Augmentation for Fairer NLP
Unwanted and often harmful social biases are becoming ever more salient in NLP research, affecting both models and datasets. In this work, we ask whether training on demographically perturbed data leads to fairer language models. We collect a large dataset of human annotated text perturbations and train a neural perturbation model, which we show outperforms heuristic alternatives. We find that (i) language models (LMs) pre-trained on demographically perturbed corpora are typically more fair, and (ii) LMs finetuned on perturbed GLUE datasets exhibit less demographic bias on downstream tasks, and (iii) fairness improvements do not come at the expense of performance on downstream tasks. Lastly, we discuss outstanding questions about how best to evaluate the (un)fairness of large language models. We hope that this exploration of neural demographic perturbation will help drive more improvement towards fairer NLP.
Measuring Social Biases in Grounded Vision and Language Embeddings
We generalize the notion of social biases from language embeddings to grounded vision and language embeddings. Biases are present in grounded embeddings, and indeed seem to be equally or more significant than for ungrounded embeddings. This is despite the fact that vision and language can suffer from different biases, which one might hope could attenuate the biases in both. Multiple ways exist to generalize metrics measuring bias in word embeddings to this new setting. We introduce the space of generalizations (Grounded-WEAT and Grounded-SEAT) and demonstrate that three generalizations answer different yet important questions about how biases, language, and vision interact. These metrics are used on a new dataset, the first for grounded bias, created by augmenting extending standard linguistic bias benchmarks with 10,228 images from COCO, Conceptual Captions, and Google Images. Dataset construction is challenging because vision datasets are themselves very biased. The presence of these biases in systems will begin to have real-world consequences as they are deployed, making carefully measuring bias and then mitigating it critical to building a fair society.
From Prejudice to Parity: A New Approach to Debiasing Large Language Model Word Embeddings
Embeddings play a pivotal role in the efficacy of Large Language Models. They are the bedrock on which these models grasp contextual relationships and foster a more nuanced understanding of language and consequently perform remarkably on a plethora of complex tasks that require a fundamental understanding of human language. Given that these embeddings themselves often reflect or exhibit bias, it stands to reason that these models may also inadvertently learn this bias. In this work, we build on the seminal previous work and propose DeepSoftDebias, an algorithm that uses a neural network to perform 'soft debiasing'. We exhaustively evaluate this algorithm across a variety of SOTA datasets, accuracy metrics, and challenging NLP tasks. We find that DeepSoftDebias outperforms the current state-of-the-art methods at reducing bias across gender, race, and religion.
Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information
Graph neural networks (GNNs) have shown great power in modeling graph structured data. However, similar to other machine learning models, GNNs may make predictions biased on protected sensitive attributes, e.g., skin color and gender. Because machine learning algorithms including GNNs are trained to reflect the distribution of the training data which often contains historical bias towards sensitive attributes. In addition, the discrimination in GNNs can be magnified by graph structures and the message-passing mechanism. As a result, the applications of GNNs in sensitive domains such as crime rate prediction would be largely limited. Though extensive studies of fair classification have been conducted on i.i.d data, methods to address the problem of discrimination on non-i.i.d data are rather limited. Furthermore, the practical scenario of sparse annotations in sensitive attributes is rarely considered in existing works. Therefore, we study the novel and important problem of learning fair GNNs with limited sensitive attribute information. FairGNN is proposed to eliminate the bias of GNNs whilst maintaining high node classification accuracy by leveraging graph structures and limited sensitive information. Our theoretical analysis shows that FairGNN can ensure the fairness of GNNs under mild conditions given limited nodes with known sensitive attributes. Extensive experiments on real-world datasets also demonstrate the effectiveness of FairGNN in debiasing and keeping high accuracy.
FairLex: A Multilingual Benchmark for Evaluating Fairness in Legal Text Processing
We present a benchmark suite of four datasets for evaluating the fairness of pre-trained language models and the techniques used to fine-tune them for downstream tasks. Our benchmarks cover four jurisdictions (European Council, USA, Switzerland, and China), five languages (English, German, French, Italian and Chinese) and fairness across five attributes (gender, age, region, language, and legal area). In our experiments, we evaluate pre-trained language models using several group-robust fine-tuning techniques and show that performance group disparities are vibrant in many cases, while none of these techniques guarantee fairness, nor consistently mitigate group disparities. Furthermore, we provide a quantitative and qualitative analysis of our results, highlighting open challenges in the development of robustness methods in legal NLP.
Bias and Fairness in Large Language Models: A Survey
Rapid advancements of large language models (LLMs) have enabled the processing, understanding, and generation of human-like text, with increasing integration into systems that touch our social sphere. Despite this success, these models can learn, perpetuate, and amplify harmful social biases. In this paper, we present a comprehensive survey of bias evaluation and mitigation techniques for LLMs. We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing, defining distinct facets of harm and introducing several desiderata to operationalize fairness for LLMs. We then unify the literature by proposing three intuitive taxonomies, two for bias evaluation, namely metrics and datasets, and one for mitigation. Our first taxonomy of metrics for bias evaluation disambiguates the relationship between metrics and evaluation datasets, and organizes metrics by the different levels at which they operate in a model: embeddings, probabilities, and generated text. Our second taxonomy of datasets for bias evaluation categorizes datasets by their structure as counterfactual inputs or prompts, and identifies the targeted harms and social groups; we also release a consolidation of publicly-available datasets for improved access. Our third taxonomy of techniques for bias mitigation classifies methods by their intervention during pre-processing, in-training, intra-processing, and post-processing, with granular subcategories that elucidate research trends. Finally, we identify open problems and challenges for future work. Synthesizing a wide range of recent research, we aim to provide a clear guide of the existing literature that empowers researchers and practitioners to better understand and prevent the propagation of bias in LLMs.
FairCoT: Enhancing Fairness in Diffusion Models via Chain of Thought Reasoning of Multimodal Language Models
In the domain of text-to-image generative models, biases inherent in training datasets often propagate into generated content, posing significant ethical challenges, particularly in socially sensitive contexts. We introduce FairCoT, a novel framework that enhances fairness in diffusion models through Chain-of-Thought (CoT) reasoning within multimodal generative large language models (LLMs). FairCoT employs iterative CoT refinement and attire-based attribute prediction to systematically mitigate biases, ensuring diverse and equitable representation in generated images. By integrating iterative reasoning processes, FairCoT addresses the limitations of zero-shot CoT in sensitive scenarios, balancing creativity with ethical responsibility. Experimental evaluations across multiple models, including DALL-E and various Stable Diffusion variants, demonstrate that FairCoT significantly improves fairness and diversity metrics without compromising image quality or relevance. Our approach advances ethical AI practices in generative modeling, promoting socially responsible content generation and setting new standards for fairness in AI-generated imagery.
Diversity and Inclusion Metrics in Subset Selection
The ethical concept of fairness has recently been applied in machine learning (ML) settings to describe a wide range of constraints and objectives. When considering the relevance of ethical concepts to subset selection problems, the concepts of diversity and inclusion are additionally applicable in order to create outputs that account for social power and access differentials. We introduce metrics based on these concepts, which can be applied together, separately, and in tandem with additional fairness constraints. Results from human subject experiments lend support to the proposed criteria. Social choice methods can additionally be leveraged to aggregate and choose preferable sets, and we detail how these may be applied.
Fair Densities via Boosting the Sufficient Statistics of Exponential Families
We introduce a boosting algorithm to pre-process data for fairness. Starting from an initial fair but inaccurate distribution, our approach shifts towards better data fitting while still ensuring a minimal fairness guarantee. To do so, it learns the sufficient statistics of an exponential family with boosting-compliant convergence. Importantly, we are able to theoretically prove that the learned distribution will have a representation rate and statistical rate data fairness guarantee. Unlike recent optimization based pre-processing methods, our approach can be easily adapted for continuous domain features. Furthermore, when the weak learners are specified to be decision trees, the sufficient statistics of the learned distribution can be examined to provide clues on sources of (un)fairness. Empirical results are present to display the quality of result on real-world data.
DAFA: Distance-Aware Fair Adversarial Training
The disparity in accuracy between classes in standard training is amplified during adversarial training, a phenomenon termed the robust fairness problem. Existing methodologies aimed to enhance robust fairness by sacrificing the model's performance on easier classes in order to improve its performance on harder ones. However, we observe that under adversarial attacks, the majority of the model's predictions for samples from the worst class are biased towards classes similar to the worst class, rather than towards the easy classes. Through theoretical and empirical analysis, we demonstrate that robust fairness deteriorates as the distance between classes decreases. Motivated by these insights, we introduce the Distance-Aware Fair Adversarial training (DAFA) methodology, which addresses robust fairness by taking into account the similarities between classes. Specifically, our method assigns distinct loss weights and adversarial margins to each class and adjusts them to encourage a trade-off in robustness among similar classes. Experimental results across various datasets demonstrate that our method not only maintains average robust accuracy but also significantly improves the worst robust accuracy, indicating a marked improvement in robust fairness compared to existing methods.
Unveiling Bias in Fairness Evaluations of Large Language Models: A Critical Literature Review of Music and Movie Recommendation Systems
The rise of generative artificial intelligence, particularly Large Language Models (LLMs), has intensified the imperative to scrutinize fairness alongside accuracy. Recent studies have begun to investigate fairness evaluations for LLMs within domains such as recommendations. Given that personalization is an intrinsic aspect of recommendation systems, its incorporation into fairness assessments is paramount. Yet, the degree to which current fairness evaluation frameworks account for personalization remains unclear. Our comprehensive literature review aims to fill this gap by examining how existing frameworks handle fairness evaluations of LLMs, with a focus on the integration of personalization factors. Despite an exhaustive collection and analysis of relevant works, we discovered that most evaluations overlook personalization, a critical facet of recommendation systems, thereby inadvertently perpetuating unfair practices. Our findings shed light on this oversight and underscore the urgent need for more nuanced fairness evaluations that acknowledge personalization. Such improvements are vital for fostering equitable development within the AI community.
Exploring Fusion Techniques in Multimodal AI-Based Recruitment: Insights from FairCVdb
Despite the large body of work on fairness-aware learning for individual modalities like tabular data, images, and text, less work has been done on multimodal data, which fuses various modalities for a comprehensive analysis. In this work, we investigate the fairness and bias implications of multimodal fusion techniques in the context of multimodal AI-based recruitment systems using the FairCVdb dataset. Our results show that early-fusion closely matches the ground truth for both demographics, achieving the lowest MAEs by integrating each modality's unique characteristics. In contrast, late-fusion leads to highly generalized mean scores and higher MAEs. Our findings emphasise the significant potential of early-fusion for accurate and fair applications, even in the presence of demographic biases, compared to late-fusion. Future research could explore alternative fusion strategies and incorporate modality-related fairness constraints to improve fairness. For code and additional insights, visit: https://github.com/Swati17293/Multimodal-AI-Based-Recruitment-FairCVdb
Fair yet Asymptotically Equal Collaborative Learning
In collaborative learning with streaming data, nodes (e.g., organizations) jointly and continuously learn a machine learning (ML) model by sharing the latest model updates computed from their latest streaming data. For the more resourceful nodes to be willing to share their model updates, they need to be fairly incentivized. This paper explores an incentive design that guarantees fairness so that nodes receive rewards commensurate to their contributions. Our approach leverages an explore-then-exploit formulation to estimate the nodes' contributions (i.e., exploration) for realizing our theoretically guaranteed fair incentives (i.e., exploitation). However, we observe a "rich get richer" phenomenon arising from the existing approaches to guarantee fairness and it discourages the participation of the less resourceful nodes. To remedy this, we additionally preserve asymptotic equality, i.e., less resourceful nodes achieve equal performance eventually to the more resourceful/"rich" nodes. We empirically demonstrate in two settings with real-world streaming data: federated online incremental learning and federated reinforcement learning, that our proposed approach outperforms existing baselines in fairness and learning performance while remaining competitive in preserving equality.
Eye Fairness: A Large-Scale 3D Imaging Dataset for Equitable Eye Diseases Screening and Fair Identity Scaling
Fairness or equity in machine learning is profoundly important for societal well-being, but limited public datasets hinder its progress, especially in the area of medicine. It is undeniable that fairness in medicine is one of the most important areas for fairness learning's applications. Currently, no large-scale public medical datasets with 3D imaging data for fairness learning are available, while 3D imaging data in modern clinics are standard tests for disease diagnosis. In addition, existing medical fairness datasets are actually repurposed datasets, and therefore they typically have limited demographic identity attributes with at most three identity attributes of age, gender, and race for fairness modeling. To address this gap, we introduce our Eye Fairness dataset with 30,000 subjects (Harvard-EF) covering three major eye diseases including age-related macular degeneration, diabetic retinopathy, and glaucoma affecting 380 million patients globally. Our Harvard-EF dataset includes both 2D fundus photos and 3D optical coherence tomography scans with six demographic identity attributes including age, gender, race, ethnicity, preferred language, and marital status. We also propose a fair identity scaling (FIS) approach combining group and individual scaling together to improve model fairness. Our FIS approach is compared with various state-of-the-art fairness learning methods with superior performance in the racial, gender, and ethnicity fairness tasks with 2D and 3D imaging data, which demonstrate the utilities of our Harvard-EF dataset for fairness learning. To facilitate fairness comparisons between different models, we propose performance-scaled disparity measures, which can be used to compare model fairness accounting for overall performance levels. The dataset and code are publicly accessible via https://ophai.hms.harvard.edu/datasets/harvard-ef30k.
Debiasing Vision-Language Models via Biased Prompts
Machine learning models have been shown to inherit biases from their training datasets. This can be particularly problematic for vision-language foundation models trained on uncurated datasets scraped from the internet. The biases can be amplified and propagated to downstream applications like zero-shot classifiers and text-to-image generative models. In this study, we propose a general approach for debiasing vision-language foundation models by projecting out biased directions in the text embedding. In particular, we show that debiasing only the text embedding with a calibrated projection matrix suffices to yield robust classifiers and fair generative models. The proposed closed-form solution enables easy integration into large-scale pipelines, and empirical results demonstrate that our approach effectively reduces social bias and spurious correlation in both discriminative and generative vision-language models without the need for additional data or training.
Rethinking Bias Mitigation: Fairer Architectures Make for Fairer Face Recognition
Face recognition systems are widely deployed in safety-critical applications, including law enforcement, yet they exhibit bias across a range of socio-demographic dimensions, such as gender and race. Conventional wisdom dictates that model biases arise from biased training data. As a consequence, previous works on bias mitigation largely focused on pre-processing the training data, adding penalties to prevent bias from effecting the model during training, or post-processing predictions to debias them, yet these approaches have shown limited success on hard problems such as face recognition. In our work, we discover that biases are actually inherent to neural network architectures themselves. Following this reframing, we conduct the first neural architecture search for fairness, jointly with a search for hyperparameters. Our search outputs a suite of models which Pareto-dominate all other high-performance architectures and existing bias mitigation methods in terms of accuracy and fairness, often by large margins, on the two most widely used datasets for face identification, CelebA and VGGFace2. Furthermore, these models generalize to other datasets and sensitive attributes. We release our code, models and raw data files at https://github.com/dooleys/FR-NAS.
Enhancing Group Fairness in Online Settings Using Oblique Decision Forests
Fairness, especially group fairness, is an important consideration in the context of machine learning systems. The most commonly adopted group fairness-enhancing techniques are in-processing methods that rely on a mixture of a fairness objective (e.g., demographic parity) and a task-specific objective (e.g., cross-entropy) during the training process. However, when data arrives in an online fashion -- one instance at a time -- optimizing such fairness objectives poses several challenges. In particular, group fairness objectives are defined using expectations of predictions across different demographic groups. In the online setting, where the algorithm has access to a single instance at a time, estimating the group fairness objective requires additional storage and significantly more computation (e.g., forward/backward passes) than the task-specific objective at every time step. In this paper, we propose Aranyani, an ensemble of oblique decision trees, to make fair decisions in online settings. The hierarchical tree structure of Aranyani enables parameter isolation and allows us to efficiently compute the fairness gradients using aggregate statistics of previous decisions, eliminating the need for additional storage and forward/backward passes. We also present an efficient framework to train Aranyani and theoretically analyze several of its properties. We conduct empirical evaluations on 5 publicly available benchmarks (including vision and language datasets) to show that Aranyani achieves a better accuracy-fairness trade-off compared to baseline approaches.
FairerCLIP: Debiasing CLIP's Zero-Shot Predictions using Functions in RKHSs
Large pre-trained vision-language models such as CLIP provide compact and general-purpose representations of text and images that are demonstrably effective across multiple downstream zero-shot prediction tasks. However, owing to the nature of their training process, these models have the potential to 1) propagate or amplify societal biases in the training data and 2) learn to rely on spurious features. This paper proposes FairerCLIP, a general approach for making zero-shot predictions of CLIP more fair and robust to spurious correlations. We formulate the problem of jointly debiasing CLIP's image and text representations in reproducing kernel Hilbert spaces (RKHSs), which affords multiple benefits: 1) Flexibility: Unlike existing approaches, which are specialized to either learn with or without ground-truth labels, FairerCLIP is adaptable to learning in both scenarios. 2) Ease of Optimization: FairerCLIP lends itself to an iterative optimization involving closed-form solvers, which leads to 4times-10times faster training than the existing methods. 3) Sample Efficiency: Under sample-limited conditions, FairerCLIP significantly outperforms baselines when they fail entirely. And, 4) Performance: Empirically, FairerCLIP achieves appreciable accuracy gains on benchmark fairness and spurious correlation datasets over their respective baselines.
BiasGuard: Guardrailing Fairness in Machine Learning Production Systems
As machine learning (ML) systems increasingly impact critical sectors such as hiring, financial risk assessments, and criminal justice, the imperative to ensure fairness has intensified due to potential negative implications. While much ML fairness research has focused on enhancing training data and processes, addressing the outputs of already deployed systems has received less attention. This paper introduces 'BiasGuard', a novel approach designed to act as a fairness guardrail in production ML systems. BiasGuard leverages Test-Time Augmentation (TTA) powered by Conditional Generative Adversarial Network (CTGAN), a cutting-edge generative AI model, to synthesize data samples conditioned on inverted protected attribute values, thereby promoting equitable outcomes across diverse groups. This method aims to provide equal opportunities for both privileged and unprivileged groups while significantly enhancing the fairness metrics of deployed systems without the need for retraining. Our comprehensive experimental analysis across diverse datasets reveals that BiasGuard enhances fairness by 31% while only reducing accuracy by 0.09% compared to non-mitigated benchmarks. Additionally, BiasGuard outperforms existing post-processing methods in improving fairness, positioning it as an effective tool to safeguard against biases when retraining the model is impractical.
SB-Bench: Stereotype Bias Benchmark for Large Multimodal Models
Stereotype biases in Large Multimodal Models (LMMs) perpetuate harmful societal prejudices, undermining the fairness and equity of AI applications. As LMMs grow increasingly influential, addressing and mitigating inherent biases related to stereotypes, harmful generations, and ambiguous assumptions in real-world scenarios has become essential. However, existing datasets evaluating stereotype biases in LMMs often lack diversity and rely on synthetic images, leaving a gap in bias evaluation for real-world visual contexts. To address this, we introduce the Stereotype Bias Benchmark (SB-bench), the most comprehensive framework to date for assessing stereotype biases across nine diverse categories with non-synthetic images. SB-bench rigorously evaluates LMMs through carefully curated, visually grounded scenarios, challenging them to reason accurately about visual stereotypes. It offers a robust evaluation framework featuring real-world visual samples, image variations, and multiple-choice question formats. By introducing visually grounded queries that isolate visual biases from textual ones, SB-bench enables a precise and nuanced assessment of a model's reasoning capabilities across varying levels of difficulty. Through rigorous testing of state-of-the-art open-source and closed-source LMMs, SB-bench provides a systematic approach to assessing stereotype biases in LMMs across key social dimensions. This benchmark represents a significant step toward fostering fairness in AI systems and reducing harmful biases, laying the groundwork for more equitable and socially responsible LMMs. Our code and dataset are publicly available.
Towards Fair Graph Anomaly Detection: Problem, New Datasets, and Evaluation
The Fair Graph Anomaly Detection (FairGAD) problem aims to accurately detect anomalous nodes in an input graph while ensuring fairness and avoiding biased predictions against individuals from sensitive subgroups such as gender or political leanings. Fairness in graphs is particularly crucial in anomaly detection areas such as misinformation detection in search/ranking systems, where decision outcomes can significantly affect individuals. However, the current literature does not comprehensively discuss this problem, nor does it provide realistic datasets that encompass actual graph structures, anomaly labels, and sensitive attributes for research in FairGAD. To bridge this gap, we introduce a formal definition of the FairGAD problem and present two novel graph datasets constructed from the globally prominent social media platforms Reddit and Twitter. These datasets comprise 1.2 million and 400,000 edges associated with 9,000 and 47,000 nodes, respectively, and leverage political leanings as sensitive attributes and misinformation spreaders as anomaly labels. We demonstrate that our FairGAD datasets significantly differ from the synthetic datasets used currently by the research community. These new datasets offer significant values for FairGAD by providing realistic data that captures the intricacies of social networks. Using our datasets, we investigate the performance-fairness trade-off in eleven existing GAD and non-graph AD methods on five state-of-the-art fairness methods, which sheds light on their effectiveness and limitations in addressing the FairGAD problem.
Blind Justice: Fairness with Encrypted Sensitive Attributes
Recent work has explored how to train machine learning models which do not discriminate against any subgroup of the population as determined by sensitive attributes such as gender or race. To avoid disparate treatment, sensitive attributes should not be considered. On the other hand, in order to avoid disparate impact, sensitive attributes must be examined, e.g., in order to learn a fair model, or to check if a given model is fair. We introduce methods from secure multi-party computation which allow us to avoid both. By encrypting sensitive attributes, we show how an outcome-based fair model may be learned, checked, or have its outputs verified and held to account, without users revealing their sensitive attributes.
Bias in Multimodal AI: Testbed for Fair Automatic Recruitment
The presence of decision-making algorithms in society is rapidly increasing nowadays, while concerns about their transparency and the possibility of these algorithms becoming new sources of discrimination are arising. In fact, many relevant automated systems have been shown to make decisions based on sensitive information or discriminate certain social groups (e.g. certain biometric systems for person recognition). With the aim of studying how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data, we propose a fictitious automated recruitment testbed: FairCVtest. We train automatic recruitment algorithms using a set of multimodal synthetic profiles consciously scored with gender and racial biases. FairCVtest shows the capacity of the Artificial Intelligence (AI) behind such recruitment tool to extract sensitive information from unstructured data, and exploit it in combination to data biases in undesirable (unfair) ways. Finally, we present a list of recent works developing techniques capable of removing sensitive information from the decision-making process of deep learning architectures. We have used one of these algorithms (SensitiveNets) to experiment discrimination-aware learning for the elimination of sensitive information in our multimodal AI framework. Our methodology and results show how to generate fairer AI-based tools in general, and in particular fairer automated recruitment systems.
Null It Out: Guarding Protected Attributes by Iterative Nullspace Projection
The ability to control for the kinds of information encoded in neural representation has a variety of use cases, especially in light of the challenge of interpreting these models. We present Iterative Null-space Projection (INLP), a novel method for removing information from neural representations. Our method is based on repeated training of linear classifiers that predict a certain property we aim to remove, followed by projection of the representations on their null-space. By doing so, the classifiers become oblivious to that target property, making it hard to linearly separate the data according to it. While applicable for multiple uses, we evaluate our method on bias and fairness use-cases, and show that our method is able to mitigate bias in word embeddings, as well as to increase fairness in a setting of multi-class classification.
Selective Fairness in Recommendation via Prompts
Recommendation fairness has attracted great attention recently. In real-world systems, users usually have multiple sensitive attributes (e.g. age, gender, and occupation), and users may not want their recommendation results influenced by those attributes. Moreover, which of and when these user attributes should be considered in fairness-aware modeling should depend on users' specific demands. In this work, we define the selective fairness task, where users can flexibly choose which sensitive attributes should the recommendation model be bias-free. We propose a novel parameter-efficient prompt-based fairness-aware recommendation (PFRec) framework, which relies on attribute-specific prompt-based bias eliminators with adversarial training, enabling selective fairness with different attribute combinations on sequential recommendation. Both task-specific and user-specific prompts are considered. We conduct extensive evaluations to verify PFRec's superiority in selective fairness. The source codes are released in https://github.com/wyqing20/PFRec.
Generalized Disparate Impact for Configurable Fairness Solutions in ML
We make two contributions in the field of AI fairness over continuous protected attributes. First, we show that the Hirschfeld-Gebelein-Renyi (HGR) indicator (the only one currently available for such a case) is valuable but subject to a few crucial limitations regarding semantics, interpretability, and robustness. Second, we introduce a family of indicators that are: 1) complementary to HGR in terms of semantics; 2) fully interpretable and transparent; 3) robust over finite samples; 4) configurable to suit specific applications. Our approach also allows us to define fine-grained constraints to permit certain types of dependence and forbid others selectively. By expanding the available options for continuous protected attributes, our approach represents a significant contribution to the area of fair artificial intelligence.
Making Machine Learning Datasets and Models FAIR for HPC: A Methodology and Case Study
The FAIR Guiding Principles aim to improve the findability, accessibility, interoperability, and reusability of digital content by making them both human and machine actionable. However, these principles have not yet been broadly adopted in the domain of machine learning-based program analyses and optimizations for High-Performance Computing (HPC). In this paper, we design a methodology to make HPC datasets and machine learning models FAIR after investigating existing FAIRness assessment and improvement techniques. Our methodology includes a comprehensive, quantitative assessment for elected data, followed by concrete, actionable suggestions to improve FAIRness with respect to common issues related to persistent identifiers, rich metadata descriptions, license and provenance information. Moreover, we select a representative training dataset to evaluate our methodology. The experiment shows the methodology can effectively improve the dataset and model's FAIRness from an initial score of 19.1% to the final score of 83.0%.
Efficient Maximum Fair Clique Search over Large Networks
Mining cohesive subgraphs in attributed graphs is an essential problem in the domain of graph data analysis. The integration of fairness considerations significantly fuels interest in models and algorithms for mining fairness-aware cohesive subgraphs. Notably, the relative fair clique emerges as a robust model, ensuring not only comprehensive attribute coverage but also greater flexibility in distributing attribute vertices. Motivated by the strength of this model, we for the first time pioneer an investigation into the identification of the maximum relative fair clique in large-scale graphs. We introduce a novel concept of colorful support, which serves as the foundation for two innovative graph reduction techniques. These techniques effectively narrow the graph's size by iteratively removing edges that do not belong to relative fair cliques. Furthermore, a series of upper bounds of the maximum relative fair clique size is proposed by incorporating consideration of vertex attributes and colors. The pruning techniques derived from these upper bounds can significantly trim unnecessary search space during the branch-and-bound procedure. Adding to this, we present a heuristic algorithm with a linear time complexity, employing both a degree-based greedy strategy and a colored degree-based greedy strategy to identify a larger relative fair clique. This heuristic algorithm can serve a dual purpose by aiding in branch pruning, thereby enhancing overall search efficiency. Extensive experiments conducted on six real-life datasets demonstrate the efficiency, scalability, and effectiveness of our algorithms.
On Measuring Social Biases in Sentence Encoders
The Word Embedding Association Test shows that GloVe and word2vec word embeddings exhibit human-like implicit biases based on gender, race, and other social constructs (Caliskan et al., 2017). Meanwhile, research on learning reusable text representations has begun to explore sentence-level texts, with some sentence encoders seeing enthusiastic adoption. Accordingly, we extend the Word Embedding Association Test to measure bias in sentence encoders. We then test several sentence encoders, including state-of-the-art methods such as ELMo and BERT, for the social biases studied in prior work and two important biases that are difficult or impossible to test at the word level. We observe mixed results including suspicious patterns of sensitivity that suggest the test's assumptions may not hold in general. We conclude by proposing directions for future work on measuring bias in sentence encoders.
Better Understanding Differences in Attribution Methods via Systematic Evaluations
Deep neural networks are very successful on many vision tasks, but hard to interpret due to their black box nature. To overcome this, various post-hoc attribution methods have been proposed to identify image regions most influential to the models' decisions. Evaluating such methods is challenging since no ground truth attributions exist. We thus propose three novel evaluation schemes to more reliably measure the faithfulness of those methods, to make comparisons between them more fair, and to make visual inspection more systematic. To address faithfulness, we propose a novel evaluation setting (DiFull) in which we carefully control which parts of the input can influence the output in order to distinguish possible from impossible attributions. To address fairness, we note that different methods are applied at different layers, which skews any comparison, and so evaluate all methods on the same layers (ML-Att) and discuss how this impacts their performance on quantitative metrics. For more systematic visualizations, we propose a scheme (AggAtt) to qualitatively evaluate the methods on complete datasets. We use these evaluation schemes to study strengths and shortcomings of some widely used attribution methods over a wide range of models. Finally, we propose a post-processing smoothing step that significantly improves the performance of some attribution methods, and discuss its applicability.
Unlocking Intrinsic Fairness in Stable Diffusion
Recent text-to-image models like Stable Diffusion produce photo-realistic images but often show demographic biases. Previous debiasing methods focused on training-based approaches, failing to explore the root causes of bias and overlooking Stable Diffusion's potential for unbiased image generation. In this paper, we demonstrate that Stable Diffusion inherently possesses fairness, which can be unlocked to achieve debiased outputs. Through carefully designed experiments, we identify the excessive bonding between text prompts and the diffusion process as a key source of bias. To address this, we propose a novel approach that perturbs text conditions to unleash Stable Diffusion's intrinsic fairness. Our method effectively mitigates bias without additional tuning, while preserving image-text alignment and image quality.
A Multidimensional Analysis of Social Biases in Vision Transformers
The embedding spaces of image models have been shown to encode a range of social biases such as racism and sexism. Here, we investigate specific factors that contribute to the emergence of these biases in Vision Transformers (ViT). Therefore, we measure the impact of training data, model architecture, and training objectives on social biases in the learned representations of ViTs. Our findings indicate that counterfactual augmentation training using diffusion-based image editing can mitigate biases, but does not eliminate them. Moreover, we find that larger models are less biased than smaller models, and that models trained using discriminative objectives are less biased than those trained using generative objectives. In addition, we observe inconsistencies in the learned social biases. To our surprise, ViTs can exhibit opposite biases when trained on the same data set using different self-supervised objectives. Our findings give insights into the factors that contribute to the emergence of social biases and suggests that we could achieve substantial fairness improvements based on model design choices.
Towards Better Understanding Attribution Methods
Deep neural networks are very successful on many vision tasks, but hard to interpret due to their black box nature. To overcome this, various post-hoc attribution methods have been proposed to identify image regions most influential to the models' decisions. Evaluating such methods is challenging since no ground truth attributions exist. We thus propose three novel evaluation schemes to more reliably measure the faithfulness of those methods, to make comparisons between them more fair, and to make visual inspection more systematic. To address faithfulness, we propose a novel evaluation setting (DiFull) in which we carefully control which parts of the input can influence the output in order to distinguish possible from impossible attributions. To address fairness, we note that different methods are applied at different layers, which skews any comparison, and so evaluate all methods on the same layers (ML-Att) and discuss how this impacts their performance on quantitative metrics. For more systematic visualizations, we propose a scheme (AggAtt) to qualitatively evaluate the methods on complete datasets. We use these evaluation schemes to study strengths and shortcomings of some widely used attribution methods. Finally, we propose a post-processing smoothing step that significantly improves the performance of some attribution methods, and discuss its applicability.
Quantifying Infra-Marginality and Its Trade-off with Group Fairness
In critical decision-making scenarios, optimizing accuracy can lead to a biased classifier, hence past work recommends enforcing group-based fairness metrics in addition to maximizing accuracy. However, doing so exposes the classifier to another kind of bias called infra-marginality. This refers to individual-level bias where some individuals/subgroups can be worse off than under simply optimizing for accuracy. For instance, a classifier implementing race-based parity may significantly disadvantage women of the advantaged race. To quantify this bias, we propose a general notion of eta-infra-marginality that can be used to evaluate the extent of this bias. We prove theoretically that, unlike other fairness metrics, infra-marginality does not have a trade-off with accuracy: high accuracy directly leads to low infra-marginality. This observation is confirmed through empirical analysis on multiple simulated and real-world datasets. Further, we find that maximizing group fairness often increases infra-marginality, suggesting the consideration of both group-level fairness and individual-level infra-marginality. However, measuring infra-marginality requires knowledge of the true distribution of individual-level outcomes correctly and explicitly. We propose a practical method to measure infra-marginality, and a simple algorithm to maximize group-wise accuracy and avoid infra-marginality.
GenderBias-VL: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing
Large Vision-Language Models (LVLMs) have been widely adopted in various applications; however, they exhibit significant gender biases. Existing benchmarks primarily evaluate gender bias at the demographic group level, neglecting individual fairness, which emphasizes equal treatment of similar individuals. This research gap limits the detection of discriminatory behaviors, as individual fairness offers a more granular examination of biases that group fairness may overlook. For the first time, this paper introduces the GenderBias-VL benchmark to evaluate occupation-related gender bias in LVLMs using counterfactual visual questions under individual fairness criteria. To construct this benchmark, we first utilize text-to-image diffusion models to generate occupation images and their gender counterfactuals. Subsequently, we generate corresponding textual occupation options by identifying stereotyped occupation pairs with high semantic similarity but opposite gender proportions in real-world statistics. This method enables the creation of large-scale visual question counterfactuals to expose biases in LVLMs, applicable in both multimodal and unimodal contexts through modifying gender attributes in specific modalities. Overall, our GenderBias-VL benchmark comprises 34,581 visual question counterfactual pairs, covering 177 occupations. Using our benchmark, we extensively evaluate 15 commonly used open-source LVLMs (\eg, LLaVA) and state-of-the-art commercial APIs, including GPT-4o and Gemini-Pro. Our findings reveal widespread gender biases in existing LVLMs. Our benchmark offers: (1) a comprehensive dataset for occupation-related gender bias evaluation; (2) an up-to-date leaderboard on LVLM biases; and (3) a nuanced understanding of the biases presented by these models. The dataset and code are available at the \href{https://genderbiasvl.github.io/{website}.}
Unboxing Occupational Bias: Grounded Debiasing LLMs with U.S. Labor Data
Large Language Models (LLMs) are prone to inheriting and amplifying societal biases embedded within their training data, potentially reinforcing harmful stereotypes related to gender, occupation, and other sensitive categories. This issue becomes particularly problematic as biased LLMs can have far-reaching consequences, leading to unfair practices and exacerbating social inequalities across various domains, such as recruitment, online content moderation, or even the criminal justice system. Although prior research has focused on detecting bias in LLMs using specialized datasets designed to highlight intrinsic biases, there has been a notable lack of investigation into how these findings correlate with authoritative datasets, such as those from the U.S. National Bureau of Labor Statistics (NBLS). To address this gap, we conduct empirical research that evaluates LLMs in a ``bias-out-of-the-box" setting, analyzing how the generated outputs compare with the distributions found in NBLS data. Furthermore, we propose a straightforward yet effective debiasing mechanism that directly incorporates NBLS instances to mitigate bias within LLMs. Our study spans seven different LLMs, including instructable, base, and mixture-of-expert models, and reveals significant levels of bias that are often overlooked by existing bias detection techniques. Importantly, our debiasing method, which does not rely on external datasets, demonstrates a substantial reduction in bias scores, highlighting the efficacy of our approach in creating fairer and more reliable LLMs.
A Contrastive Learning Approach to Mitigate Bias in Speech Models
Speech models may be affected by performance imbalance in different population subgroups, raising concerns about fair treatment across these groups. Prior attempts to mitigate unfairness either focus on user-defined subgroups, potentially overlooking other affected subgroups, or do not explicitly improve the internal representation at the subgroup level. This paper proposes the first adoption of contrastive learning to mitigate speech model bias in underperforming subgroups. We employ a three-level learning technique that guides the model in focusing on different scopes for the contrastive loss, i.e., task, subgroup, and the errors within subgroups. The experiments on two spoken language understanding datasets and two languages demonstrate that our approach improves internal subgroup representations, thus reducing model bias and enhancing performance.
Semantics derived automatically from language corpora contain human-like biases
Artificial intelligence and machine learning are in a period of astounding growth. However, there are concerns that these technologies may be used, either with or without intention, to perpetuate the prejudice and unfairness that unfortunately characterizes many human institutions. Here we show for the first time that human-like semantic biases result from the application of standard machine learning to ordinary language---the same sort of language humans are exposed to every day. We replicate a spectrum of standard human biases as exposed by the Implicit Association Test and other well-known psychological studies. We replicate these using a widely used, purely statistical machine-learning model---namely, the GloVe word embedding---trained on a corpus of text from the Web. Our results indicate that language itself contains recoverable and accurate imprints of our historic biases, whether these are morally neutral as towards insects or flowers, problematic as towards race or gender, or even simply veridical, reflecting the {\em status quo} for the distribution of gender with respect to careers or first names. These regularities are captured by machine learning along with the rest of semantics. In addition to our empirical findings concerning language, we also contribute new methods for evaluating bias in text, the Word Embedding Association Test (WEAT) and the Word Embedding Factual Association Test (WEFAT). Our results have implications not only for AI and machine learning, but also for the fields of psychology, sociology, and human ethics, since they raise the possibility that mere exposure to everyday language can account for the biases we replicate here.
Global Voices, Local Biases: Socio-Cultural Prejudices across Languages
Human biases are ubiquitous but not uniform: disparities exist across linguistic, cultural, and societal borders. As large amounts of recent literature suggest, language models (LMs) trained on human data can reflect and often amplify the effects of these social biases. However, the vast majority of existing studies on bias are heavily skewed towards Western and European languages. In this work, we scale the Word Embedding Association Test (WEAT) to 24 languages, enabling broader studies and yielding interesting findings about LM bias. We additionally enhance this data with culturally relevant information for each language, capturing local contexts on a global scale. Further, to encompass more widely prevalent societal biases, we examine new bias dimensions across toxicity, ableism, and more. Moreover, we delve deeper into the Indian linguistic landscape, conducting a comprehensive regional bias analysis across six prevalent Indian languages. Finally, we highlight the significance of these social biases and the new dimensions through an extensive comparison of embedding methods, reinforcing the need to address them in pursuit of more equitable language models. All code, data and results are available here: https://github.com/iamshnoo/weathub.
FairBench: A Four-Stage Automatic Framework for Detecting Stereotypes and Biases in Large Language Models
Detecting stereotypes and biases in Large Language Models (LLMs) can enhance fairness and reduce adverse impacts on individuals or groups when these LLMs are applied. However, the majority of existing methods focus on measuring the model's preference towards sentences containing biases and stereotypes within datasets, which lacks interpretability and cannot detect implicit biases and stereotypes in the real world. To address this gap, this paper introduces a four-stage framework to directly evaluate stereotypes and biases in the generated content of LLMs, including direct inquiry testing, serial or adapted story testing, implicit association testing, and unknown situation testing. Additionally, the paper proposes multi-dimensional evaluation metrics and explainable zero-shot prompts for automated evaluation. Using the education sector as a case study, we constructed the Edu-FairBench based on the four-stage framework, which encompasses 12,632 open-ended questions covering nine sensitive factors and 26 educational scenarios. Experimental results reveal varying degrees of stereotypes and biases in five LLMs evaluated on Edu-FairBench. Moreover, the results of our proposed automated evaluation method have shown a high correlation with human annotations.
Towards Fairness in Personalized Ads Using Impression Variance Aware Reinforcement Learning
Variances in ad impression outcomes across demographic groups are increasingly considered to be potentially indicative of algorithmic bias in personalized ads systems. While there are many definitions of fairness that could be applicable in the context of personalized systems, we present a framework which we call the Variance Reduction System (VRS) for achieving more equitable outcomes in Meta's ads systems. VRS seeks to achieve a distribution of impressions with respect to selected protected class (PC) attributes that more closely aligns the demographics of an ad's eligible audience (a function of advertiser targeting criteria) with the audience who sees that ad, in a privacy-preserving manner. We first define metrics to quantify fairness gaps in terms of ad impression variances with respect to PC attributes including gender and estimated race. We then present the VRS for re-ranking ads in an impression variance-aware manner. We evaluate VRS via extensive simulations over different parameter choices and study the effect of the VRS on the chosen fairness metric. We finally present online A/B testing results from applying VRS to Meta's ads systems, concluding with a discussion of future work. We have deployed the VRS to all users in the US for housing ads, resulting in significant improvement in our fairness metric. VRS is the first large-scale deployed framework for pursuing fairness for multiple PC attributes in online advertising.
Generalized Reductions: Making any Hierarchical Clustering Fair and Balanced with Low Cost
Clustering is a fundamental building block of modern statistical analysis pipelines. Fair clustering has seen much attention from the machine learning community in recent years. We are some of the first to study fairness in the context of hierarchical clustering, after the results of Ahmadian et al. from NeurIPS in 2020. We evaluate our results using Dasgupta's cost function, perhaps one of the most prevalent theoretical metrics for hierarchical clustering evaluation. Our work vastly improves the previous O(n^{5/6}polylog(n)) fair approximation for cost to a near polylogarithmic O(n^delta polylog(n)) fair approximation for any constant deltain(0,1). This result establishes a cost-fairness tradeoff and extends to broader fairness constraints than the previous work. We also show how to alter existing hierarchical clusterings to guarantee fairness and cluster balance across any level in the hierarchy.
Generating Synthetic Fair Syntax-agnostic Data by Learning and Distilling Fair Representation
Data Fairness is a crucial topic due to the recent wide usage of AI powered applications. Most of the real-world data is filled with human or machine biases and when those data are being used to train AI models, there is a chance that the model will reflect the bias in the training data. Existing bias-mitigating generative methods based on GANs, Diffusion models need in-processing fairness objectives and fail to consider computational overhead while choosing computationally-heavy architectures, which may lead to high computational demands, instability and poor optimization performance. To mitigate this issue, in this work, we present a fair data generation technique based on knowledge distillation, where we use a small architecture to distill the fair representation in the latent space. The idea of fair latent space distillation enables more flexible and stable training of Fair Generative Models (FGMs). We first learn a syntax-agnostic (for any data type) fair representation of the data, followed by distillation in the latent space into a smaller model. After distillation, we use the distilled fair latent space to generate high-fidelity fair synthetic data. While distilling, we employ quality loss (for fair distillation) and utility loss (for data utility) to ensure that the fairness and data utility characteristics remain in the distilled latent space. Our approaches show a 5%, 5% and 10% rise in performance in fairness, synthetic sample quality and data utility, respectively, than the state-of-the-art fair generative model.
Fairness in Streaming Submodular Maximization over a Matroid Constraint
Streaming submodular maximization is a natural model for the task of selecting a representative subset from a large-scale dataset. If datapoints have sensitive attributes such as gender or race, it becomes important to enforce fairness to avoid bias and discrimination. This has spurred significant interest in developing fair machine learning algorithms. Recently, such algorithms have been developed for monotone submodular maximization under a cardinality constraint. In this paper, we study the natural generalization of this problem to a matroid constraint. We give streaming algorithms as well as impossibility results that provide trade-offs between efficiency, quality and fairness. We validate our findings empirically on a range of well-known real-world applications: exemplar-based clustering, movie recommendation, and maximum coverage in social networks.
A Theoretical Analysis of Contrastive Unsupervised Representation Learning
Recent empirical works have successfully used unlabeled data to learn feature representations that are broadly useful in downstream classification tasks. Several of these methods are reminiscent of the well-known word2vec embedding algorithm: leveraging availability of pairs of semantically "similar" data points and "negative samples," the learner forces the inner product of representations of similar pairs with each other to be higher on average than with negative samples. The current paper uses the term contrastive learning for such algorithms and presents a theoretical framework for analyzing them by introducing latent classes and hypothesizing that semantically similar points are sampled from the same latent class. This framework allows us to show provable guarantees on the performance of the learned representations on the average classification task that is comprised of a subset of the same set of latent classes. Our generalization bound also shows that learned representations can reduce (labeled) sample complexity on downstream tasks. We conduct controlled experiments in both the text and image domains to support the theory.
Interventional Fairness on Partially Known Causal Graphs: A Constrained Optimization Approach
Fair machine learning aims to prevent discrimination against individuals or sub-populations based on sensitive attributes such as gender and race. In recent years, causal inference methods have been increasingly used in fair machine learning to measure unfairness by causal effects. However, current methods assume that the true causal graph is given, which is often not true in real-world applications. To address this limitation, this paper proposes a framework for achieving causal fairness based on the notion of interventions when the true causal graph is partially known. The proposed approach involves modeling fair prediction using a Partially Directed Acyclic Graph (PDAG), specifically, a class of causal DAGs that can be learned from observational data combined with domain knowledge. The PDAG is used to measure causal fairness, and a constrained optimization problem is formulated to balance between fairness and accuracy. Results on both simulated and real-world datasets demonstrate the effectiveness of this method.
Fighting Fire with Fire: Contrastive Debiasing without Bias-free Data via Generative Bias-transformation
Despite their remarkable ability to generalize with over-capacity networks, deep neural networks often learn to abuse spurious biases in the data instead of using the actual task-related information. Since such shortcuts are only effective within the collected dataset, the resulting biased model underperforms on real-world inputs, or cause unintended social repercussions such as gender discrimination. To counteract the influence of bias, existing methods either exploit auxiliary information which is rarely obtainable in practice, or sift for bias-free samples in the training data, hoping for the sufficient existence of clean samples. However, such presumptions about the data are not always guaranteed. In this paper, we propose Contrastive Debiasing via Generative Bias-transformation~(CDvG) which is capable of operating in more general environments where existing methods break down due to unmet presumptions such as insufficient bias-free samples. Motivated by our observation that not only discriminative models, as previously known, but also generative models tend to focus on the bias when possible, CDvG uses a translation model to transform the bias in the sample to another mode of bias while preserving task-relevant information. Through contrastive learning, we set transformed biased views against another, learning bias-invariant representations. Experimental results on synthetic and real-world datasets demonstrate that our framework outperforms the current state-of-the-arts, and effectively prevents the models from being biased even when bias-free samples are extremely scarce.
FairDomain: Achieving Fairness in Cross-Domain Medical Image Segmentation and Classification
Addressing fairness in artificial intelligence (AI), particularly in medical AI, is crucial for ensuring equitable healthcare outcomes. Recent efforts to enhance fairness have introduced new methodologies and datasets in medical AI. However, the fairness issue under the setting of domain transfer is almost unexplored, while it is common that clinics rely on different imaging technologies (e.g., different retinal imaging modalities) for patient diagnosis. This paper presents FairDomain, a pioneering systemic study into algorithmic fairness under domain shifts, employing state-of-the-art domain adaptation (DA) and generalization (DG) algorithms for both medical segmentation and classification tasks to understand how biases are transferred between different domains. We also introduce a novel plug-and-play fair identity attention (FIA) module that adapts to various DA and DG algorithms to improve fairness by using self-attention to adjust feature importance based on demographic attributes. Additionally, we curate the first fairness-focused dataset with two paired imaging modalities for the same patient cohort on medical segmentation and classification tasks, to rigorously assess fairness in domain-shift scenarios. Excluding the confounding impact of demographic distribution variation between source and target domains will allow clearer quantification of the performance of domain transfer models. Our extensive evaluations reveal that the proposed FIA significantly enhances both model performance accounted for fairness across all domain shift settings (i.e., DA and DG) with respect to different demographics, which outperforms existing methods on both segmentation and classification. The code and data can be accessed at https://ophai.hms.harvard.edu/datasets/harvard-fairdomain20k.
Measuring Bias in Contextualized Word Representations
Contextual word embeddings such as BERT have achieved state of the art performance in numerous NLP tasks. Since they are optimized to capture the statistical properties of training data, they tend to pick up on and amplify social stereotypes present in the data as well. In this study, we (1)~propose a template-based method to quantify bias in BERT; (2)~show that this method obtains more consistent results in capturing social biases than the traditional cosine based method; and (3)~conduct a case study, evaluating gender bias in a downstream task of Gender Pronoun Resolution. Although our case study focuses on gender bias, the proposed technique is generalizable to unveiling other biases, including in multiclass settings, such as racial and religious biases.
Fair4Free: Generating High-fidelity Fair Synthetic Samples using Data Free Distillation
This work presents Fair4Free, a novel generative model to generate synthetic fair data using data-free distillation in the latent space. Fair4Free can work on the situation when the data is private or inaccessible. In our approach, we first train a teacher model to create fair representation and then distil the knowledge to a student model (using a smaller architecture). The process of distilling the student model is data-free, i.e. the student model does not have access to the training dataset while distilling. After the distillation, we use the distilled model to generate fair synthetic samples. Our extensive experiments show that our synthetic samples outperform state-of-the-art models in all three criteria (fairness, utility and synthetic quality) with a performance increase of 5% for fairness, 8% for utility and 12% in synthetic quality for both tabular and image datasets.
FairAutoML: Embracing Unfairness Mitigation in AutoML
In this work, we propose an Automated Machine Learning (AutoML) system to search for models not only with good prediction accuracy but also fair. We first investigate the necessity and impact of unfairness mitigation in the AutoML context. We establish the FairAutoML framework. The framework provides a novel design based on pragmatic abstractions, which makes it convenient to incorporate existing fairness definitions, unfairness mitigation techniques, and hyperparameter search methods into the model search and evaluation process. Following this framework, we develop a fair AutoML system based on an existing AutoML system. The augmented system includes a resource allocation strategy to dynamically decide when and on which models to conduct unfairness mitigation according to the prediction accuracy, fairness, and resource consumption on the fly. Extensive empirical evaluation shows that our system can achieve a good `fair accuracy' and high resource efficiency.
Penalizing Unfairness in Binary Classification
We present a new approach for mitigating unfairness in learned classifiers. In particular, we focus on binary classification tasks over individuals from two populations, where, as our criterion for fairness, we wish to achieve similar false positive rates in both populations, and similar false negative rates in both populations. As a proof of concept, we implement our approach and empirically evaluate its ability to achieve both fairness and accuracy, using datasets from the fields of criminal risk assessment, credit, lending, and college admissions.
Fairness-Aware Structured Pruning in Transformers
The increasing size of large language models (LLMs) has introduced challenges in their training and inference. Removing model components is perceived as a solution to tackle the large model sizes, however, existing pruning methods solely focus on performance, without considering an essential aspect for the responsible use of LLMs: model fairness. It is crucial to address the fairness of LLMs towards diverse groups, such as women, Black people, LGBTQ+, Jewish communities, among others, as they are being deployed and available to a wide audience. In this work, first, we investigate how attention heads impact fairness and performance in pre-trained transformer-based language models. We then propose a novel method to prune the attention heads that negatively impact fairness while retaining the heads critical for performance, i.e. language modeling capabilities. Our approach is practical in terms of time and resources, as it does not require fine-tuning the final pruned, and fairer, model. Our findings demonstrate a reduction in gender bias by 19%, 19.5%, 39.5%, 34.7%, 23%, and 8% for DistilGPT-2, GPT-2, GPT-Neo of two different sizes, GPT-J, and Llama 2 models, respectively, in comparison to the biased model, with only a slight decrease in performance.
Quantifying Bias in Text-to-Image Generative Models
Bias in text-to-image (T2I) models can propagate unfair social representations and may be used to aggressively market ideas or push controversial agendas. Existing T2I model bias evaluation methods only focus on social biases. We look beyond that and instead propose an evaluation methodology to quantify general biases in T2I generative models, without any preconceived notions. We assess four state-of-the-art T2I models and compare their baseline bias characteristics to their respective variants (two for each), where certain biases have been intentionally induced. We propose three evaluation metrics to assess model biases including: (i) Distribution bias, (ii) Jaccard hallucination and (iii) Generative miss-rate. We conduct two evaluation studies, modelling biases under general, and task-oriented conditions, using a marketing scenario as the domain for the latter. We also quantify social biases to compare our findings to related works. Finally, our methodology is transferred to evaluate captioned-image datasets and measure their bias. Our approach is objective, domain-agnostic and consistently measures different forms of T2I model biases. We have developed a web application and practical implementation of what has been proposed in this work, which is at https://huggingface.co/spaces/JVice/try-before-you-bias. A video series with demonstrations is available at https://www.youtube.com/channel/UCk-0xyUyT0MSd_hkp4jQt1Q
Mining bias-target Alignment from Voronoi Cells
Despite significant research efforts, deep neural networks are still vulnerable to biases: this raises concerns about their fairness and limits their generalization. In this paper, we propose a bias-agnostic approach to mitigate the impact of bias in deep neural networks. Unlike traditional debiasing approaches, we rely on a metric to quantify ``bias alignment/misalignment'' on target classes, and use this information to discourage the propagation of bias-target alignment information through the network. We conduct experiments on several commonly used datasets for debiasing and compare our method to supervised and bias-specific approaches. Our results indicate that the proposed method achieves comparable performance to state-of-the-art supervised approaches, although it is bias-agnostic, even in presence of multiple biases in the same sample.
Zipfian Whitening
The word embedding space in neural models is skewed, and correcting this can improve task performance. We point out that most approaches for modeling, correcting, and measuring the symmetry of an embedding space implicitly assume that the word frequencies are uniform; in reality, word frequencies follow a highly non-uniform distribution, known as Zipf's law. Surprisingly, simply performing PCA whitening weighted by the empirical word frequency that follows Zipf's law significantly improves task performance, surpassing established baselines. From a theoretical perspective, both our approach and existing methods can be clearly categorized: word representations are distributed according to an exponential family with either uniform or Zipfian base measures. By adopting the latter approach, we can naturally emphasize informative low-frequency words in terms of their vector norm, which becomes evident from the information-geometric perspective, and in terms of the loss functions for imbalanced classification. Additionally, our theory corroborates that popular natural language processing methods, such as skip-gram negative sampling, WhiteningBERT, and headless language models, work well just because their word embeddings encode the empirical word frequency into the underlying probabilistic model.
Prototype Based Classification from Hierarchy to Fairness
Artificial neural nets can represent and classify many types of data but are often tailored to particular applications -- e.g., for "fair" or "hierarchical" classification. Once an architecture has been selected, it is often difficult for humans to adjust models for a new task; for example, a hierarchical classifier cannot be easily transformed into a fair classifier that shields a protected field. Our contribution in this work is a new neural network architecture, the concept subspace network (CSN), which generalizes existing specialized classifiers to produce a unified model capable of learning a spectrum of multi-concept relationships. We demonstrate that CSNs reproduce state-of-the-art results in fair classification when enforcing concept independence, may be transformed into hierarchical classifiers, or even reconcile fairness and hierarchy within a single classifier. The CSN is inspired by existing prototype-based classifiers that promote interpretability.
From Pretraining Data to Language Models to Downstream Tasks: Tracking the Trails of Political Biases Leading to Unfair NLP Models
Language models (LMs) are pretrained on diverse data sources, including news, discussion forums, books, and online encyclopedias. A significant portion of this data includes opinions and perspectives which, on one hand, celebrate democracy and diversity of ideas, and on the other hand are inherently socially biased. Our work develops new methods to (1) measure political biases in LMs trained on such corpora, along social and economic axes, and (2) measure the fairness of downstream NLP models trained on top of politically biased LMs. We focus on hate speech and misinformation detection, aiming to empirically quantify the effects of political (social, economic) biases in pretraining data on the fairness of high-stakes social-oriented tasks. Our findings reveal that pretrained LMs do have political leanings that reinforce the polarization present in pretraining corpora, propagating social biases into hate speech predictions and misinformation detectors. We discuss the implications of our findings for NLP research and propose future directions to mitigate unfairness.
FairX: A comprehensive benchmarking tool for model analysis using fairness, utility, and explainability
We present FairX, an open-source Python-based benchmarking tool designed for the comprehensive analysis of models under the umbrella of fairness, utility, and eXplainability (XAI). FairX enables users to train benchmarking bias-mitigation models and evaluate their fairness using a wide array of fairness metrics, data utility metrics, and generate explanations for model predictions, all within a unified framework. Existing benchmarking tools do not have the way to evaluate synthetic data generated from fair generative models, also they do not have the support for training fair generative models either. In FairX, we add fair generative models in the collection of our fair-model library (pre-processing, in-processing, post-processing) and evaluation metrics for evaluating the quality of synthetic fair data. This version of FairX supports both tabular and image datasets. It also allows users to provide their own custom datasets. The open-source FairX benchmarking package is publicly available at https://github.com/fahim-sikder/FairX.
Is ChatGPT Fair for Recommendation? Evaluating Fairness in Large Language Model Recommendation
The remarkable achievements of Large Language Models (LLMs) have led to the emergence of a novel recommendation paradigm -- Recommendation via LLM (RecLLM). Nevertheless, it is important to note that LLMs may contain social prejudices, and therefore, the fairness of recommendations made by RecLLM requires further investigation. To avoid the potential risks of RecLLM, it is imperative to evaluate the fairness of RecLLM with respect to various sensitive attributes on the user side. Due to the differences between the RecLLM paradigm and the traditional recommendation paradigm, it is problematic to directly use the fairness benchmark of traditional recommendation. To address the dilemma, we propose a novel benchmark called Fairness of Recommendation via LLM (FaiRLLM). This benchmark comprises carefully crafted metrics and a dataset that accounts for eight sensitive attributes1 in two recommendation scenarios: music and movies. By utilizing our FaiRLLM benchmark, we conducted an evaluation of ChatGPT and discovered that it still exhibits unfairness to some sensitive attributes when generating recommendations. Our code and dataset can be found at https://github.com/jizhi-zhang/FaiRLLM.
DebCSE: Rethinking Unsupervised Contrastive Sentence Embedding Learning in the Debiasing Perspective
Several prior studies have suggested that word frequency biases can cause the Bert model to learn indistinguishable sentence embeddings. Contrastive learning schemes such as SimCSE and ConSERT have already been adopted successfully in unsupervised sentence embedding to improve the quality of embeddings by reducing this bias. However, these methods still introduce new biases such as sentence length bias and false negative sample bias, that hinders model's ability to learn more fine-grained semantics. In this paper, we reexamine the challenges of contrastive sentence embedding learning from a debiasing perspective and argue that effectively eliminating the influence of various biases is crucial for learning high-quality sentence embeddings. We think all those biases are introduced by simple rules for constructing training data in contrastive learning and the key for contrastive learning sentence embedding is to mimic the distribution of training data in supervised machine learning in unsupervised way. We propose a novel contrastive framework for sentence embedding, termed DebCSE, which can eliminate the impact of these biases by an inverse propensity weighted sampling method to select high-quality positive and negative pairs according to both the surface and semantic similarity between sentences. Extensive experiments on semantic textual similarity (STS) benchmarks reveal that DebCSE significantly outperforms the latest state-of-the-art models with an average Spearman's correlation coefficient of 80.33% on BERTbase.
Factoring the Matrix of Domination: A Critical Review and Reimagination of Intersectionality in AI Fairness
Intersectionality is a critical framework that, through inquiry and praxis, allows us to examine how social inequalities persist through domains of structure and discipline. Given AI fairness' raison d'etre of "fairness", we argue that adopting intersectionality as an analytical framework is pivotal to effectively operationalizing fairness. Through a critical review of how intersectionality is discussed in 30 papers from the AI fairness literature, we deductively and inductively: 1) map how intersectionality tenets operate within the AI fairness paradigm and 2) uncover gaps between the conceptualization and operationalization of intersectionality. We find that researchers overwhelmingly reduce intersectionality to optimizing for fairness metrics over demographic subgroups. They also fail to discuss their social context and when mentioning power, they mostly situate it only within the AI pipeline. We: 3) outline and assess the implications of these gaps for critical inquiry and praxis, and 4) provide actionable recommendations for AI fairness researchers to engage with intersectionality in their work by grounding it in AI epistemology.
Statistical Uncertainty in Word Embeddings: GloVe-V
Static word embeddings are ubiquitous in computational social science applications and contribute to practical decision-making in a variety of fields including law and healthcare. However, assessing the statistical uncertainty in downstream conclusions drawn from word embedding statistics has remained challenging. When using only point estimates for embeddings, researchers have no streamlined way of assessing the degree to which their model selection criteria or scientific conclusions are subject to noise due to sparsity in the underlying data used to generate the embeddings. We introduce a method to obtain approximate, easy-to-use, and scalable reconstruction error variance estimates for GloVe (Pennington et al., 2014), one of the most widely used word embedding models, using an analytical approximation to a multivariate normal model. To demonstrate the value of embeddings with variance (GloVe-V), we illustrate how our approach enables principled hypothesis testing in core word embedding tasks, such as comparing the similarity between different word pairs in vector space, assessing the performance of different models, and analyzing the relative degree of ethnic or gender bias in a corpus using different word lists.
FAIR Enough: How Can We Develop and Assess a FAIR-Compliant Dataset for Large Language Models' Training?
The rapid evolution of Large Language Models (LLMs) highlights the necessity for ethical considerations and data integrity in AI development, particularly emphasizing the role of FAIR (Findable, Accessible, Interoperable, Reusable) data principles. While these principles are crucial for ethical data stewardship, their specific application in the context of LLM training data remains an under-explored area. This research gap is the focus of our study, which begins with an examination of existing literature to underline the importance of FAIR principles in managing data for LLM training. Building upon this, we propose a novel framework designed to integrate FAIR principles into the LLM development lifecycle. A contribution of our work is the development of a comprehensive checklist intended to guide researchers and developers in applying FAIR data principles consistently across the model development process. The utility and effectiveness of our framework are validated through a case study on creating a FAIR-compliant dataset aimed at detecting and mitigating biases in LLMs. We present this framework to the community as a tool to foster the creation of technologically advanced, ethically grounded, and socially responsible AI models.
Unified Embedding: Battle-Tested Feature Representations for Web-Scale ML Systems
Learning high-quality feature embeddings efficiently and effectively is critical for the performance of web-scale machine learning systems. A typical model ingests hundreds of features with vocabularies on the order of millions to billions of tokens. The standard approach is to represent each feature value as a d-dimensional embedding, introducing hundreds of billions of parameters for extremely high-cardinality features. This bottleneck has led to substantial progress in alternative embedding algorithms. Many of these methods, however, make the assumption that each feature uses an independent embedding table. This work introduces a simple yet highly effective framework, Feature Multiplexing, where one single representation space is used across many different categorical features. Our theoretical and empirical analysis reveals that multiplexed embeddings can be decomposed into components from each constituent feature, allowing models to distinguish between features. We show that multiplexed representations lead to Pareto-optimal parameter-accuracy tradeoffs for three public benchmark datasets. Further, we propose a highly practical approach called Unified Embedding with three major benefits: simplified feature configuration, strong adaptation to dynamic data distributions, and compatibility with modern hardware. Unified embedding gives significant improvements in offline and online metrics compared to highly competitive baselines across five web-scale search, ads, and recommender systems, where it serves billions of users across the world in industry-leading products.
Adversarial Attacks on Fairness of Graph Neural Networks
Fairness-aware graph neural networks (GNNs) have gained a surge of attention as they can reduce the bias of predictions on any demographic group (e.g., female) in graph-based applications. Although these methods greatly improve the algorithmic fairness of GNNs, the fairness can be easily corrupted by carefully designed adversarial attacks. In this paper, we investigate the problem of adversarial attacks on fairness of GNNs and propose G-FairAttack, a general framework for attacking various types of fairness-aware GNNs in terms of fairness with an unnoticeable effect on prediction utility. In addition, we propose a fast computation technique to reduce the time complexity of G-FairAttack. The experimental study demonstrates that G-FairAttack successfully corrupts the fairness of different types of GNNs while keeping the attack unnoticeable. Our study on fairness attacks sheds light on potential vulnerabilities in fairness-aware GNNs and guides further research on the robustness of GNNs in terms of fairness.
A Toolbox for Surfacing Health Equity Harms and Biases in Large Language Models
Large language models (LLMs) hold immense promise to serve complex health information needs but also have the potential to introduce harm and exacerbate health disparities. Reliably evaluating equity-related model failures is a critical step toward developing systems that promote health equity. In this work, we present resources and methodologies for surfacing biases with potential to precipitate equity-related harms in long-form, LLM-generated answers to medical questions and then conduct an empirical case study with Med-PaLM 2, resulting in the largest human evaluation study in this area to date. Our contributions include a multifactorial framework for human assessment of LLM-generated answers for biases, and EquityMedQA, a collection of seven newly-released datasets comprising both manually-curated and LLM-generated questions enriched for adversarial queries. Both our human assessment framework and dataset design process are grounded in an iterative participatory approach and review of possible biases in Med-PaLM 2 answers to adversarial queries. Through our empirical study, we find that the use of a collection of datasets curated through a variety of methodologies, coupled with a thorough evaluation protocol that leverages multiple assessment rubric designs and diverse rater groups, surfaces biases that may be missed via narrower evaluation approaches. Our experience underscores the importance of using diverse assessment methodologies and involving raters of varying backgrounds and expertise. We emphasize that while our framework can identify specific forms of bias, it is not sufficient to holistically assess whether the deployment of an AI system promotes equitable health outcomes. We hope the broader community leverages and builds on these tools and methods towards realizing a shared goal of LLMs that promote accessible and equitable healthcare for all.
FairGBM: Gradient Boosting with Fairness Constraints
Tabular data is prevalent in many high-stakes domains, such as financial services or public policy. Gradient Boosted Decision Trees (GBDT) are popular in these settings due to their scalability, performance, and low training cost. While fairness in these domains is a foremost concern, existing in-processing Fair ML methods are either incompatible with GBDT, or incur in significant performance losses while taking considerably longer to train. We present FairGBM, a dual ascent learning framework for training GBDT under fairness constraints, with little to no impact on predictive performance when compared to unconstrained GBDT. Since observational fairness metrics are non-differentiable, we propose smooth convex error rate proxies for common fairness criteria, enabling gradient-based optimization using a ``proxy-Lagrangian'' formulation. Our implementation shows an order of magnitude speedup in training time relative to related work, a pivotal aspect to foster the widespread adoption of FairGBM by real-world practitioners.
Just Rank: Rethinking Evaluation with Word and Sentence Similarities
Word and sentence embeddings are useful feature representations in natural language processing. However, intrinsic evaluation for embeddings lags far behind, and there has been no significant update since the past decade. Word and sentence similarity tasks have become the de facto evaluation method. It leads models to overfit to such evaluations, negatively impacting embedding models' development. This paper first points out the problems using semantic similarity as the gold standard for word and sentence embedding evaluations. Further, we propose a new intrinsic evaluation method called EvalRank, which shows a much stronger correlation with downstream tasks. Extensive experiments are conducted based on 60+ models and popular datasets to certify our judgments. Finally, the practical evaluation toolkit is released for future benchmarking purposes.
MABEL: Attenuating Gender Bias using Textual Entailment Data
Pre-trained language models encode undesirable social biases, which are further exacerbated in downstream use. To this end, we propose MABEL (a Method for Attenuating Gender Bias using Entailment Labels), an intermediate pre-training approach for mitigating gender bias in contextualized representations. Key to our approach is the use of a contrastive learning objective on counterfactually augmented, gender-balanced entailment pairs from natural language inference (NLI) datasets. We also introduce an alignment regularizer that pulls identical entailment pairs along opposite gender directions closer. We extensively evaluate our approach on intrinsic and extrinsic metrics, and show that MABEL outperforms previous task-agnostic debiasing approaches in terms of fairness. It also preserves task performance after fine-tuning on downstream tasks. Together, these findings demonstrate the suitability of NLI data as an effective means of bias mitigation, as opposed to only using unlabeled sentences in the literature. Finally, we identify that existing approaches often use evaluation settings that are insufficient or inconsistent. We make an effort to reproduce and compare previous methods, and call for unifying the evaluation settings across gender debiasing methods for better future comparison.
Superhuman Fairness
The fairness of machine learning-based decisions has become an increasingly important focus in the design of supervised machine learning methods. Most fairness approaches optimize a specified trade-off between performance measure(s) (e.g., accuracy, log loss, or AUC) and fairness metric(s) (e.g., demographic parity, equalized odds). This begs the question: are the right performance-fairness trade-offs being specified? We instead re-cast fair machine learning as an imitation learning task by introducing superhuman fairness, which seeks to simultaneously outperform human decisions on multiple predictive performance and fairness measures. We demonstrate the benefits of this approach given suboptimal decisions.
Mind the gap in university rankings: a complex network approach towards fairness
University rankings are increasingly adopted for academic comparison and success quantification, even to establish performance-based criteria for funding assignment. However, rankings are not neutral tools, and their use frequently overlooks disparities in the starting conditions of institutions. In this research, we detect and measure structural biases that affect in inhomogeneous ways the ranking outcomes of universities from diversified territorial and educational contexts. Moreover, we develop a fairer rating system based on a fully data-driven debiasing strategy that returns an equity-oriented redefinition of the achieved scores. The key idea consists in partitioning universities in similarity groups, determined from multifaceted data using complex network analysis, and referring the performance of each institution to an expectation based on its peers. Significant evidence of territorial biases emerges for official rankings concerning both the OECD and Italian university systems, hence debiasing provides relevant insights suggesting the design of fairer strategies for performance-based funding allocations.
Counterfactual Fairness in Mortgage Lending via Matching and Randomization
Unfairness in mortgage lending has created generational inequality among racial and ethnic groups in the US. Many studies address this problem, but most existing work focuses on correlation-based techniques. In our work, we use the framework of counterfactual fairness to train fair machine learning models. We propose a new causal graph for the variables available in the Home Mortgage Disclosure Act (HMDA) data. We use a matching-based approach instead of the latent variable modeling approach, because the former approach does not rely on any modeling assumptions. Furthermore, matching provides us with counterfactual pairs in which the race variable is isolated. We first demonstrate the unfairness in mortgage approval and interest rates between African-American and non-Hispanic White sub-populations. Then, we show that having balanced data using matching does not guarantee perfect counterfactual fairness of the machine learning models.
A Comprehensive Survey of Bias in LLMs: Current Landscape and Future Directions
Large Language Models(LLMs) have revolutionized various applications in natural language processing (NLP) by providing unprecedented text generation, translation, and comprehension capabilities. However, their widespread deployment has brought to light significant concerns regarding biases embedded within these models. This paper presents a comprehensive survey of biases in LLMs, aiming to provide an extensive review of the types, sources, impacts, and mitigation strategies related to these biases. We systematically categorize biases into several dimensions. Our survey synthesizes current research findings and discusses the implications of biases in real-world applications. Additionally, we critically assess existing bias mitigation techniques and propose future research directions to enhance fairness and equity in LLMs. This survey serves as a foundational resource for researchers, practitioners, and policymakers concerned with addressing and understanding biases in LLMs.
Are Models Biased on Text without Gender-related Language?
Gender bias research has been pivotal in revealing undesirable behaviors in large language models, exposing serious gender stereotypes associated with occupations, and emotions. A key observation in prior work is that models reinforce stereotypes as a consequence of the gendered correlations that are present in the training data. In this paper, we focus on bias where the effect from training data is unclear, and instead address the question: Do language models still exhibit gender bias in non-stereotypical settings? To do so, we introduce UnStereoEval (USE), a novel framework tailored for investigating gender bias in stereotype-free scenarios. USE defines a sentence-level score based on pretraining data statistics to determine if the sentence contain minimal word-gender associations. To systematically benchmark the fairness of popular language models in stereotype-free scenarios, we utilize USE to automatically generate benchmarks without any gender-related language. By leveraging USE's sentence-level score, we also repurpose prior gender bias benchmarks (Winobias and Winogender) for non-stereotypical evaluation. Surprisingly, we find low fairness across all 28 tested models. Concretely, models demonstrate fair behavior in only 9%-41% of stereotype-free sentences, suggesting that bias does not solely stem from the presence of gender-related words. These results raise important questions about where underlying model biases come from and highlight the need for more systematic and comprehensive bias evaluation. We release the full dataset and code at https://ucinlp.github.io/unstereo-eval.
Procedural Fairness Through Decoupling Objectionable Data Generating Components
We reveal and address the frequently overlooked yet important issue of disguised procedural unfairness, namely, the potentially inadvertent alterations on the behavior of neutral (i.e., not problematic) aspects of data generating process, and/or the lack of procedural assurance of the greatest benefit of the least advantaged individuals. Inspired by John Rawls's advocacy for pure procedural justice, we view automated decision-making as a microcosm of social institutions, and consider how the data generating process itself can satisfy the requirements of procedural fairness. We propose a framework that decouples the objectionable data generating components from the neutral ones by utilizing reference points and the associated value instantiation rule. Our findings highlight the necessity of preventing disguised procedural unfairness, drawing attention not only to the objectionable data generating components that we aim to mitigate, but also more importantly, to the neutral components that we intend to keep unaffected.
Data Shapley: Equitable Valuation of Data for Machine Learning
As data becomes the fuel driving technological and economic growth, a fundamental challenge is how to quantify the value of data in algorithmic predictions and decisions. For example, in healthcare and consumer markets, it has been suggested that individuals should be compensated for the data that they generate, but it is not clear what is an equitable valuation for individual data. In this work, we develop a principled framework to address data valuation in the context of supervised machine learning. Given a learning algorithm trained on n data points to produce a predictor, we propose data Shapley as a metric to quantify the value of each training datum to the predictor performance. Data Shapley value uniquely satisfies several natural properties of equitable data valuation. We develop Monte Carlo and gradient-based methods to efficiently estimate data Shapley values in practical settings where complex learning algorithms, including neural networks, are trained on large datasets. In addition to being equitable, extensive experiments across biomedical, image and synthetic data demonstrate that data Shapley has several other benefits: 1) it is more powerful than the popular leave-one-out or leverage score in providing insight on what data is more valuable for a given learning task; 2) low Shapley value data effectively capture outliers and corruptions; 3) high Shapley value data inform what type of new data to acquire to improve the predictor.
AI-generated faces influence gender stereotypes and racial homogenization
Text-to-image generative AI models such as Stable Diffusion are used daily by millions worldwide. However, the extent to which these models exhibit racial and gender stereotypes is not yet fully understood. Here, we document significant biases in Stable Diffusion across six races, two genders, 32 professions, and eight attributes. Additionally, we examine the degree to which Stable Diffusion depicts individuals of the same race as being similar to one another. This analysis reveals significant racial homogenization, e.g., depicting nearly all middle eastern men as dark-skinned, bearded, and wearing a traditional headdress. We then propose novel debiasing solutions that address the above stereotypes. Finally, using a preregistered experiment, we show that being presented with inclusive AI-generated faces reduces people's racial and gender biases, while being presented with non-inclusive ones increases such biases. This persists regardless of whether the images are labeled as AI-generated. Taken together, our findings emphasize the need to address biases and stereotypes in AI-generated content.