new

Get trending papers in your email inbox!

Subscribe

Daily Papers

by AK and the research community

CAR: Conceptualization-Augmented Reasoner for Zero-Shot Commonsense Question Answering

The task of zero-shot commonsense question answering evaluates models on their capacity to reason about general scenarios beyond those presented in specific datasets. Existing approaches for tackling this task leverage external knowledge from CommonSense Knowledge Bases (CSKBs) by pretraining the model on synthetic QA pairs constructed from CSKBs. In these approaches, negative examples (distractors) are formulated by randomly sampling from CSKBs using fairly primitive keyword constraints. However, two bottlenecks limit these approaches: the inherent incompleteness of CSKBs limits the semantic coverage of synthetic QA pairs, and the lack of human annotations makes the sampled negative examples potentially uninformative and contradictory. To tackle these limitations above, we propose Conceptualization-Augmented Reasoner (CAR), a zero-shot commonsense question-answering framework that fully leverages the power of conceptualization. Specifically, CAR abstracts a commonsense knowledge triple to many higher-level instances, which increases the coverage of CSKB and expands the ground-truth answer space, reducing the likelihood of selecting false-negative distractors. Extensive experiments demonstrate that CAR more robustly generalizes to answering questions about zero-shot commonsense scenarios than existing methods, including large language models, such as GPT3.5 and ChatGPT. Our codes, data, and model checkpoints are available at https://github.com/HKUST-KnowComp/CAR.

Carve3D: Improving Multi-view Reconstruction Consistency for Diffusion Models with RL Finetuning

Recent advancements in the text-to-3D task leverage finetuned text-to-image diffusion models to generate multi-view images, followed by NeRF reconstruction. Yet, existing supervised finetuned (SFT) diffusion models still suffer from multi-view inconsistency and the resulting NeRF artifacts. Although training longer with SFT improves consistency, it also causes distribution shift, which reduces diversity and realistic details. We argue that the SFT of multi-view diffusion models resembles the instruction finetuning stage of the LLM alignment pipeline and can benefit from RL finetuning (RLFT) methods. Essentially, RLFT methods optimize models beyond their SFT data distribution by using their own outputs, effectively mitigating distribution shift. To this end, we introduce Carve3D, a RLFT method coupled with the Multi-view Reconstruction Consistency (MRC) metric, to improve the consistency of multi-view diffusion models. To compute MRC on a set of multi-view images, we compare them with their corresponding renderings of the reconstructed NeRF at the same viewpoints. We validate the robustness of MRC with extensive experiments conducted under controlled inconsistency levels. We enhance the base RLFT algorithm to stabilize the training process, reduce distribution shift, and identify scaling laws. Through qualitative and quantitative experiments, along with a user study, we demonstrate Carve3D's improved multi-view consistency, the resulting superior NeRF reconstruction quality, and minimal distribution shift compared to longer SFT. Project webpage: https://desaixie.github.io/carve-3d.

CARP: Visuomotor Policy Learning via Coarse-to-Fine Autoregressive Prediction

In robotic visuomotor policy learning, diffusion-based models have achieved significant success in improving the accuracy of action trajectory generation compared to traditional autoregressive models. However, they suffer from inefficiency due to multiple denoising steps and limited flexibility from complex constraints. In this paper, we introduce Coarse-to-Fine AutoRegressive Policy (CARP), a novel paradigm for visuomotor policy learning that redefines the autoregressive action generation process as a coarse-to-fine, next-scale approach. CARP decouples action generation into two stages: first, an action autoencoder learns multi-scale representations of the entire action sequence; then, a GPT-style transformer refines the sequence prediction through a coarse-to-fine autoregressive process. This straightforward and intuitive approach produces highly accurate and smooth actions, matching or even surpassing the performance of diffusion-based policies while maintaining efficiency on par with autoregressive policies. We conduct extensive evaluations across diverse settings, including single-task and multi-task scenarios on state-based and image-based simulation benchmarks, as well as real-world tasks. CARP achieves competitive success rates, with up to a 10% improvement, and delivers 10x faster inference compared to state-of-the-art policies, establishing a high-performance, efficient, and flexible paradigm for action generation in robotic tasks.

Instance-guided Cartoon Editing with a Large-scale Dataset

Cartoon editing, appreciated by both professional illustrators and hobbyists, allows extensive creative freedom and the development of original narratives within the cartoon domain. However, the existing literature on cartoon editing is complex and leans heavily on manual operations, owing to the challenge of automatic identification of individual character instances. Therefore, an automated segmentation of these elements becomes imperative to facilitate a variety of cartoon editing applications such as visual style editing, motion decomposition and transfer, and the computation of stereoscopic depths for an enriched visual experience. Unfortunately, most current segmentation methods are designed for natural photographs, failing to recognize from the intricate aesthetics of cartoon subjects, thus lowering segmentation quality. The major challenge stems from two key shortcomings: the rarity of high-quality cartoon dedicated datasets and the absence of competent models for high-resolution instance extraction on cartoons. To address this, we introduce a high-quality dataset of over 100k paired high-resolution cartoon images and their instance labeling masks. We also present an instance-aware image segmentation model that can generate accurate, high-resolution segmentation masks for characters in cartoon images. We present that the proposed approach enables a range of segmentation-dependent cartoon editing applications like 3D Ken Burns parallax effects, text-guided cartoon style editing, and puppet animation from illustrations and manga.

The state-of-the-art in Cardiac MRI Reconstruction: Results of the CMRxRecon Challenge in MICCAI 2023

Cardiac MRI, crucial for evaluating heart structure and function, faces limitations like slow imaging and motion artifacts. Undersampling reconstruction, especially data-driven algorithms, has emerged as a promising solution to accelerate scans and enhance imaging performance using highly under-sampled data. Nevertheless, the scarcity of publicly available cardiac k-space datasets and evaluation platform hinder the development of data-driven reconstruction algorithms. To address this issue, we organized the Cardiac MRI Reconstruction Challenge (CMRxRecon) in 2023, in collaboration with the 26th International Conference on MICCAI. CMRxRecon presented an extensive k-space dataset comprising cine and mapping raw data, accompanied by detailed annotations of cardiac anatomical structures. With overwhelming participation, the challenge attracted more than 285 teams and over 600 participants. Among them, 22 teams successfully submitted Docker containers for the testing phase, with 7 teams submitted for both cine and mapping tasks. All teams use deep learning based approaches, indicating that deep learning has predominately become a promising solution for the problem. The first-place winner of both tasks utilizes the E2E-VarNet architecture as backbones. In contrast, U-Net is still the most popular backbone for both multi-coil and single-coil reconstructions. This paper provides a comprehensive overview of the challenge design, presents a summary of the submitted results, reviews the employed methods, and offers an in-depth discussion that aims to inspire future advancements in cardiac MRI reconstruction models. The summary emphasizes the effective strategies observed in Cardiac MRI reconstruction, including backbone architecture, loss function, pre-processing techniques, physical modeling, and model complexity, thereby providing valuable insights for further developments in this field.

CACTUS: An Open Dataset and Framework for Automated Cardiac Assessment and Classification of Ultrasound Images Using Deep Transfer Learning

Cardiac ultrasound (US) scanning is a commonly used techniques in cardiology to diagnose the health of the heart and its proper functioning. Therefore, it is necessary to consider ways to automate these tasks and assist medical professionals in classifying and assessing cardiac US images. Machine learning (ML) techniques are regarded as a prominent solution due to their success in numerous applications aimed at enhancing the medical field, including addressing the shortage of echography technicians. However, the limited availability of medical data presents a significant barrier to applying ML in cardiology, particularly regarding US images of the heart. This paper addresses this challenge by introducing the first open graded dataset for Cardiac Assessment and ClassificaTion of UltraSound (CACTUS), which is available online. This dataset contains images obtained from scanning a CAE Blue Phantom and representing various heart views and different quality levels, exceeding the conventional cardiac views typically found in the literature. Additionally, the paper introduces a Deep Learning (DL) framework consisting of two main components. The first component classifies cardiac US images based on the heart view using a Convolutional Neural Network (CNN). The second component uses Transfer Learning (TL) to fine-tune the knowledge from the first component and create a model for grading and assessing cardiac images. The framework demonstrates high performance in both classification and grading, achieving up to 99.43% accuracy and as low as 0.3067 error, respectively. To showcase its robustness, the framework is further fine-tuned using new images representing additional cardiac views and compared to several other state-of-the-art architectures. The framework's outcomes and performance in handling real-time scans were also assessed using a questionnaire answered by cardiac experts.

Carbon and Silicon, Coexist or Compete? A Survey on Human-AI Interactions in Agent-based Modeling and Simulation

Recent interest in human-AI interactions in agent-based modeling and simulation (ABMS) has grown rapidly due to the widespread utilization of large language models (LLMs). ABMS is an intelligent approach that simulates autonomous agents' behaviors within a defined environment to research emergent phenomena. Integrating LLMs into ABMS enables natural language interaction between humans and models. Meanwhile, it introduces new challenges that rely on human interaction to address. Human involvement can assist ABMS in adapting to flexible and complex research demands. However, systematic reviews of interactions that examine how humans and AI interact in ABMS are lacking. In this paper, we investigate existing works and propose a novel taxonomy to categorize the interactions derived from them. Specifically, human users refer to researchers who utilize ABMS tools to conduct their studies in our survey. We decompose interactions into five dimensions: the goals that users want to achieve (Why), the phases that users are involved (When), the components of the system (What), the roles of users (Who), and the means of interactions (How). Our analysis summarizes the findings that reveal existing interaction patterns. They provide researchers who develop interactions with comprehensive guidance on how humans and AI interact. We further discuss the unexplored interactions and suggest future research directions.

CarDreamer: Open-Source Learning Platform for World Model based Autonomous Driving

To safely navigate intricate real-world scenarios, autonomous vehicles must be able to adapt to diverse road conditions and anticipate future events. World model (WM) based reinforcement learning (RL) has emerged as a promising approach by learning and predicting the complex dynamics of various environments. Nevertheless, to the best of our knowledge, there does not exist an accessible platform for training and testing such algorithms in sophisticated driving environments. To fill this void, we introduce CarDreamer, the first open-source learning platform designed specifically for developing WM based autonomous driving algorithms. It comprises three key components: 1) World model backbone: CarDreamer has integrated some state-of-the-art WMs, which simplifies the reproduction of RL algorithms. The backbone is decoupled from the rest and communicates using the standard Gym interface, so that users can easily integrate and test their own algorithms. 2) Built-in tasks: CarDreamer offers a comprehensive set of highly configurable driving tasks which are compatible with Gym interfaces and are equipped with empirically optimized reward functions. 3) Task development suite: This suite streamlines the creation of driving tasks, enabling easy definition of traffic flows and vehicle routes, along with automatic collection of multi-modal observation data. A visualization server allows users to trace real-time agent driving videos and performance metrics through a browser. Furthermore, we conduct extensive experiments using built-in tasks to evaluate the performance and potential of WMs in autonomous driving. Thanks to the richness and flexibility of CarDreamer, we also systematically study the impact of observation modality, observability, and sharing of vehicle intentions on AV safety and efficiency. All code and documents are accessible on https://github.com/ucd-dare/CarDreamer.

CARE to Compare: A real-world dataset for anomaly detection in wind turbine data

Anomaly detection plays a crucial role in the field of predictive maintenance for wind turbines, yet the comparison of different algorithms poses a difficult task because domain specific public datasets are scarce. Many comparisons of different approaches either use benchmarks composed of data from many different domains, inaccessible data or one of the few publicly available datasets which lack detailed information about the faults. Moreover, many publications highlight a couple of case studies where fault detection was successful. With this paper we publish a high quality dataset that contains data from 36 wind turbines across 3 different wind farms as well as the most detailed fault information of any public wind turbine dataset as far as we know. The new dataset contains 89 years worth of real-world operating data of wind turbines, distributed across 44 labeled time frames for anomalies that led up to faults, as well as 51 time series representing normal behavior. Additionally, the quality of training data is ensured by turbine-status-based labels for each data point. Furthermore, we propose a new scoring method, called CARE (Coverage, Accuracy, Reliability and Earliness), which takes advantage of the information depth that is present in the dataset to identify a good all-around anomaly detection model. This score considers the anomaly detection performance, the ability to recognize normal behavior properly and the capability to raise as few false alarms as possible while simultaneously detecting anomalies early.

CARMA: Context-Aware Runtime Reconfiguration for Energy-Efficient Sensor Fusion

Autonomous systems (AS) are systems that can adapt and change their behavior in response to unanticipated events and include systems such as aerial drones, autonomous vehicles, and ground/aquatic robots. AS require a wide array of sensors, deep-learning models, and powerful hardware platforms to perceive and safely operate in real-time. However, in many contexts, some sensing modalities negatively impact perception while increasing the system's overall energy consumption. Since AS are often energy-constrained edge devices, energy-efficient sensor fusion methods have been proposed. However, existing methods either fail to adapt to changing scenario conditions or to optimize energy efficiency system-wide. We propose CARMA: a context-aware sensor fusion approach that uses context to dynamically reconfigure the computation flow on a Field-Programmable Gate Array (FPGA) at runtime. By clock-gating unused sensors and model sub-components, CARMA significantly reduces the energy used by a multi-sensory object detector without compromising performance. We use a Deep-learning Processor Unit (DPU) based reconfiguration approach to minimize the latency of model reconfiguration. We evaluate multiple context-identification strategies, propose a novel system-wide energy-performance joint optimization, and evaluate scenario-specific perception performance. Across challenging real-world sensing contexts, CARMA outperforms state-of-the-art methods with up to 1.3x speedup and 73% lower energy consumption.

E-CAR: Efficient Continuous Autoregressive Image Generation via Multistage Modeling

Recent advances in autoregressive (AR) models with continuous tokens for image generation show promising results by eliminating the need for discrete tokenization. However, these models face efficiency challenges due to their sequential token generation nature and reliance on computationally intensive diffusion-based sampling. We present ECAR (Efficient Continuous Auto-Regressive Image Generation via Multistage Modeling), an approach that addresses these limitations through two intertwined innovations: (1) a stage-wise continuous token generation strategy that reduces computational complexity and provides progressively refined token maps as hierarchical conditions, and (2) a multistage flow-based distribution modeling method that transforms only partial-denoised distributions at each stage comparing to complete denoising in normal diffusion models. Holistically, ECAR operates by generating tokens at increasing resolutions while simultaneously denoising the image at each stage. This design not only reduces token-to-image transformation cost by a factor of the stage number but also enables parallel processing at the token level. Our approach not only enhances computational efficiency but also aligns naturally with image generation principles by operating in continuous token space and following a hierarchical generation process from coarse to fine details. Experimental results demonstrate that ECAR achieves comparable image quality to DiT Peebles & Xie [2023] while requiring 10times FLOPs reduction and 5times speedup to generate a 256times256 image.

3DRealCar: An In-the-wild RGB-D Car Dataset with 360-degree Views

3D cars are commonly used in self-driving systems, virtual/augmented reality, and games. However, existing 3D car datasets are either synthetic or low-quality, presenting a significant gap toward the high-quality real-world 3D car datasets and limiting their applications in practical scenarios. In this paper, we propose the first large-scale 3D real car dataset, termed 3DRealCar, offering three distinctive features. (1) High-Volume: 2,500 cars are meticulously scanned by 3D scanners, obtaining car images and point clouds with real-world dimensions; (2) High-Quality: Each car is captured in an average of 200 dense, high-resolution 360-degree RGB-D views, enabling high-fidelity 3D reconstruction; (3) High-Diversity: The dataset contains various cars from over 100 brands, collected under three distinct lighting conditions, including reflective, standard, and dark. Additionally, we offer detailed car parsing maps for each instance to promote research in car parsing tasks. Moreover, we remove background point clouds and standardize the car orientation to a unified axis for the reconstruction only on cars without background and controllable rendering. We benchmark 3D reconstruction results with state-of-the-art methods across each lighting condition in 3DRealCar. Extensive experiments demonstrate that the standard lighting condition part of 3DRealCar can be used to produce a large number of high-quality 3D cars, improving various 2D and 3D tasks related to cars. Notably, our dataset brings insight into the fact that recent 3D reconstruction methods face challenges in reconstructing high-quality 3D cars under reflective and dark lighting conditions. red{https://xiaobiaodu.github.io/3drealcar/{Our dataset is available here.}}

Model Cards for Model Reporting

Trained machine learning models are increasingly used to perform high-impact tasks in areas such as law enforcement, medicine, education, and employment. In order to clarify the intended use cases of machine learning models and minimize their usage in contexts for which they are not well suited, we recommend that released models be accompanied by documentation detailing their performance characteristics. In this paper, we propose a framework that we call model cards, to encourage such transparent model reporting. Model cards are short documents accompanying trained machine learning models that provide benchmarked evaluation in a variety of conditions, such as across different cultural, demographic, or phenotypic groups (e.g., race, geographic location, sex, Fitzpatrick skin type) and intersectional groups (e.g., age and race, or sex and Fitzpatrick skin type) that are relevant to the intended application domains. Model cards also disclose the context in which models are intended to be used, details of the performance evaluation procedures, and other relevant information. While we focus primarily on human-centered machine learning models in the application fields of computer vision and natural language processing, this framework can be used to document any trained machine learning model. To solidify the concept, we provide cards for two supervised models: One trained to detect smiling faces in images, and one trained to detect toxic comments in text. We propose model cards as a step towards the responsible democratization of machine learning and related AI technology, increasing transparency into how well AI technology works. We hope this work encourages those releasing trained machine learning models to accompany model releases with similar detailed evaluation numbers and other relevant documentation.

We Care: Multimodal Depression Detection and Knowledge Infused Mental Health Therapeutic Response Generation

The detection of depression through non-verbal cues has gained significant attention. Previous research predominantly centred on identifying depression within the confines of controlled laboratory environments, often with the supervision of psychologists or counsellors. Unfortunately, datasets generated in such controlled settings may struggle to account for individual behaviours in real-life situations. In response to this limitation, we present the Extended D-vlog dataset, encompassing a collection of 1, 261 YouTube vlogs. Additionally, the emergence of large language models (LLMs) like GPT3.5, and GPT4 has sparked interest in their potential they can act like mental health professionals. Yet, the readiness of these LLM models to be used in real-life settings is still a concern as they can give wrong responses that can harm the users. We introduce a virtual agent serving as an initial contact for mental health patients, offering Cognitive Behavioral Therapy (CBT)-based responses. It comprises two core functions: 1. Identifying depression in individuals, and 2. Delivering CBT-based therapeutic responses. Our Mistral model achieved impressive scores of 70.1% and 30.9% for distortion assessment and classification, along with a Bert score of 88.7%. Moreover, utilizing the TVLT model on our Multimodal Extended D-vlog Dataset yielded outstanding results, with an impressive F1-score of 67.8%

Compliance Cards: Computational Artifacts for Automated AI Regulation Compliance

As the artificial intelligence (AI) supply chain grows more complex, AI systems and models are increasingly likely to incorporate externally-sourced ingredients such as datasets and other models. In such cases, determining whether or not an AI system or model complies with the EU AI Act will require gathering compliance-related metadata about both the AI system or model at-large as well as those externally-supplied ingredients. There must then be an analysis that looks across all of this metadata to render a prediction about the compliance of the overall AI system or model. Up until now, this process has not been automated. Thus, it has not been possible to make real-time compliance determinations in scenarios where doing so would be advantageous, such as the iterative workflows of today's AI developers, search and acquisition of AI ingredients on communities like Hugging Face, federated and continuous learning, and more. To address this shortcoming, we introduce a highly automated system for AI Act compliance analysis. This system has two key elements. First is an interlocking set of computational artifacts that capture compliance-related metadata about both: (1) the AI system or model at-large; (2) any constituent ingredients such as datasets and models. Second is an automated analysis algorithm that operates across those computational artifacts to render a run-time prediction about whether or not the overall AI system or model complies with the AI Act. Working together, these elements promise to enhance and accelerate AI Act compliance assessments.

Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning

We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process inspired by the successful strategy employed by AlphaZero. Our work leverages Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals. To enhance consistency in intermediate steps, we combine outcome validation and stepwise self-evaluation, continually updating the quality assessment of newly generated data. The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data. Theoretical analysis reveals the importance of using on-policy sampled data for successful self-improving. Extensive evaluations on various arithmetic and commonsense reasoning tasks demonstrate remarkable performance improvements over existing models. For instance, our approach outperforms the Mistral-7B Supervised Fine-Tuning (SFT) baseline on GSM8K, MATH, and ARC-C, with substantial increases in accuracy to 81.8% (+5.9%), 34.7% (+5.8%), and 76.4% (+15.8%), respectively. Additionally, our research delves into the training and inference compute tradeoff, providing insights into how our method effectively maximizes performance gains. Our code is publicly available at https://github.com/YuxiXie/MCTS-DPO.

Monte Carlo Linear Clustering with Single-Point Supervision is Enough for Infrared Small Target Detection

Single-frame infrared small target (SIRST) detection aims at separating small targets from clutter backgrounds on infrared images. Recently, deep learning based methods have achieved promising performance on SIRST detection, but at the cost of a large amount of training data with expensive pixel-level annotations. To reduce the annotation burden, we propose the first method to achieve SIRST detection with single-point supervision. The core idea of this work is to recover the per-pixel mask of each target from the given single point label by using clustering approaches, which looks simple but is indeed challenging since targets are always insalient and accompanied with background clutters. To handle this issue, we introduce randomness to the clustering process by adding noise to the input images, and then obtain much more reliable pseudo masks by averaging the clustered results. Thanks to this "Monte Carlo" clustering approach, our method can accurately recover pseudo masks and thus turn arbitrary fully supervised SIRST detection networks into weakly supervised ones with only single point annotation. Experiments on four datasets demonstrate that our method can be applied to existing SIRST detection networks to achieve comparable performance with their fully supervised counterparts, which reveals that single-point supervision is strong enough for SIRST detection. Our code will be available at: https://github.com/YeRen123455/SIRST-Single-Point-Supervision.

Challenges and Complexities in Machine Learning based Credit Card Fraud Detection

Credit cards play an exploding role in modern economies. Its popularity and ubiquity have created a fertile ground for fraud, assisted by the cross boarder reach and instantaneous confirmation. While transactions are growing, the fraud percentages are also on the rise as well as the true cost of a dollar fraud. Volume of transactions, uniqueness of frauds and ingenuity of the fraudster are main challenges in detecting frauds. The advent of machine learning, artificial intelligence and big data has opened up new tools in the fight against frauds. Given past transactions, a machine learning algorithm has the ability to 'learn' infinitely complex characteristics in order to identify frauds in real-time, surpassing the best human investigators. However, the developments in fraud detection algorithms has been challenging and slow due the massively unbalanced nature of fraud data, absence of benchmarks and standard evaluation metrics to identify better performing classifiers, lack of sharing and disclosure of research findings and the difficulties in getting access to confidential transaction data for research. This work investigates the properties of typical massively imbalanced fraud data sets, their availability, suitability for research use while exploring the widely varying nature of fraud distributions. Furthermore, we show how human annotation errors compound with machine classification errors. We also carry out experiments to determine the effect of PCA obfuscation (as a means of disseminating sensitive transaction data for research and machine learning) on algorithmic performance of classifiers and show that while PCA does not significantly degrade performance, care should be taken to use the appropriate principle component size (dimensions) to avoid overfitting.

Forecasting Patient Demand at Urgent Care Clinics using Machine Learning

Urgent care clinics and emergency departments around the world periodically suffer from extended wait times beyond patient expectations due to inadequate staffing levels. These delays have been linked with adverse clinical outcomes. Previous research into forecasting demand this domain has mostly used a collection of statistical techniques, with machine learning approaches only now beginning to emerge in recent literature. The forecasting problem for this domain is difficult and has also been complicated by the COVID-19 pandemic which has introduced an additional complexity to this estimation due to typical demand patterns being disrupted. This study explores the ability of machine learning methods to generate accurate patient presentations at two large urgent care clinics located in Auckland, New Zealand. A number of machine learning algorithms were explored in order to determine the most effective technique for this problem domain, with the task of making forecasts of daily patient demand three months in advance. The study also performed an in-depth analysis into the model behaviour in respect to the exploration of which features are most effective at predicting demand and which features are capable of adaptation to the volatility caused by the COVID-19 pandemic lockdowns. The results showed that ensemble-based methods delivered the most accurate and consistent solutions on average, generating improvements in the range of 23%-27% over the existing in-house methods for estimating the daily demand.

Data Cards: Purposeful and Transparent Dataset Documentation for Responsible AI

As research and industry moves towards large-scale models capable of numerous downstream tasks, the complexity of understanding multi-modal datasets that give nuance to models rapidly increases. A clear and thorough understanding of a dataset's origins, development, intent, ethical considerations and evolution becomes a necessary step for the responsible and informed deployment of models, especially those in people-facing contexts and high-risk domains. However, the burden of this understanding often falls on the intelligibility, conciseness, and comprehensiveness of the documentation. It requires consistency and comparability across the documentation of all datasets involved, and as such documentation must be treated as a user-centric product in and of itself. In this paper, we propose Data Cards for fostering transparent, purposeful and human-centered documentation of datasets within the practical contexts of industry and research. Data Cards are structured summaries of essential facts about various aspects of ML datasets needed by stakeholders across a dataset's lifecycle for responsible AI development. These summaries provide explanations of processes and rationales that shape the data and consequently the models, such as upstream sources, data collection and annotation methods; training and evaluation methods, intended use; or decisions affecting model performance. We also present frameworks that ground Data Cards in real-world utility and human-centricity. Using two case studies, we report on desirable characteristics that support adoption across domains, organizational structures, and audience groups. Finally, we present lessons learned from deploying over 20 Data Cards.

DreamCar: Leveraging Car-specific Prior for in-the-wild 3D Car Reconstruction

Self-driving industries usually employ professional artists to build exquisite 3D cars. However, it is expensive to craft large-scale digital assets. Since there are already numerous datasets available that contain a vast number of images of cars, we focus on reconstructing high-quality 3D car models from these datasets. However, these datasets only contain one side of cars in the forward-moving scene. We try to use the existing generative models to provide more supervision information, but they struggle to generalize well in cars since they are trained on synthetic datasets not car-specific. In addition, The reconstructed 3D car texture misaligns due to a large error in camera pose estimation when dealing with in-the-wild images. These restrictions make it challenging for previous methods to reconstruct complete 3D cars. To address these problems, we propose a novel method, named DreamCar, which can reconstruct high-quality 3D cars given a few images even a single image. To generalize the generative model, we collect a car dataset, named Car360, with over 5,600 vehicles. With this dataset, we make the generative model more robust to cars. We use this generative prior specific to the car to guide its reconstruction via Score Distillation Sampling. To further complement the supervision information, we utilize the geometric and appearance symmetry of cars. Finally, we propose a pose optimization method that rectifies poses to tackle texture misalignment. Extensive experiments demonstrate that our method significantly outperforms existing methods in reconstructing high-quality 3D cars. https://xiaobiaodu.github.io/dreamcar-project/{Our code is available.}

DrivAerNet++: A Large-Scale Multimodal Car Dataset with Computational Fluid Dynamics Simulations and Deep Learning Benchmarks

We present DrivAerNet++, the largest and most comprehensive multimodal dataset for aerodynamic car design. DrivAerNet++ comprises 8,000 diverse car designs modeled with high-fidelity computational fluid dynamics (CFD) simulations. The dataset includes diverse car configurations such as fastback, notchback, and estateback, with different underbody and wheel designs to represent both internal combustion engines and electric vehicles. Each entry in the dataset features detailed 3D meshes, parametric models, aerodynamic coefficients, and extensive flow and surface field data, along with segmented parts for car classification and point cloud data. This dataset supports a wide array of machine learning applications including data-driven design optimization, generative modeling, surrogate model training, CFD simulation acceleration, and geometric classification. With more than 39 TB of publicly available engineering data, DrivAerNet++ fills a significant gap in available resources, providing high-quality, diverse data to enhance model training, promote generalization, and accelerate automotive design processes. Along with rigorous dataset validation, we also provide ML benchmarking results on the task of aerodynamic drag prediction, showcasing the breadth of applications supported by our dataset. This dataset is set to significantly impact automotive design and broader engineering disciplines by fostering innovation and improving the fidelity of aerodynamic evaluations.

DrivAerNet: A Parametric Car Dataset for Data-Driven Aerodynamic Design and Graph-Based Drag Prediction

This study introduces DrivAerNet, a large-scale high-fidelity CFD dataset of 3D industry-standard car shapes, and RegDGCNN, a dynamic graph convolutional neural network model, both aimed at aerodynamic car design through machine learning. DrivAerNet, with its 4000 detailed 3D car meshes using 0.5 million surface mesh faces and comprehensive aerodynamic performance data comprising of full 3D pressure, velocity fields, and wall-shear stresses, addresses the critical need for extensive datasets to train deep learning models in engineering applications. It is 60\% larger than the previously available largest public dataset of cars, and is the only open-source dataset that also models wheels and underbody. RegDGCNN leverages this large-scale dataset to provide high-precision drag estimates directly from 3D meshes, bypassing traditional limitations such as the need for 2D image rendering or Signed Distance Fields (SDF). By enabling fast drag estimation in seconds, RegDGCNN facilitates rapid aerodynamic assessments, offering a substantial leap towards integrating data-driven methods in automotive design. Together, DrivAerNet and RegDGCNN promise to accelerate the car design process and contribute to the development of more efficient vehicles. To lay the groundwork for future innovations in the field, the dataset and code used in our study are publicly accessible at https://github.com/Mohamedelrefaie/DrivAerNet

Deep Geometrized Cartoon Line Inbetweening

We aim to address a significant but understudied problem in the anime industry, namely the inbetweening of cartoon line drawings. Inbetweening involves generating intermediate frames between two black-and-white line drawings and is a time-consuming and expensive process that can benefit from automation. However, existing frame interpolation methods that rely on matching and warping whole raster images are unsuitable for line inbetweening and often produce blurring artifacts that damage the intricate line structures. To preserve the precision and detail of the line drawings, we propose a new approach, AnimeInbet, which geometrizes raster line drawings into graphs of endpoints and reframes the inbetweening task as a graph fusion problem with vertex repositioning. Our method can effectively capture the sparsity and unique structure of line drawings while preserving the details during inbetweening. This is made possible via our novel modules, i.e., vertex geometric embedding, a vertex correspondence Transformer, an effective mechanism for vertex repositioning and a visibility predictor. To train our method, we introduce MixamoLine240, a new dataset of line drawings with ground truth vectorization and matching labels. Our experiments demonstrate that AnimeInbet synthesizes high-quality, clean, and complete intermediate line drawings, outperforming existing methods quantitatively and qualitatively, especially in cases with large motions. Data and code are available at https://github.com/lisiyao21/AnimeInbet.

Instance Needs More Care: Rewriting Prompts for Instances Yields Better Zero-Shot Performance

Enabling large language models (LLMs) to perform tasks in zero-shot has been an appealing goal owing to its labor-saving (i.e., requiring no task-specific annotations); as such, zero-shot prompting approaches also enjoy better task generalizability. To improve LLMs' zero-shot performance, prior work has focused on devising more effective task instructions (e.g., ``let's think step by step'' ). However, we argue that, in order for an LLM to solve them correctly in zero-shot, individual test instances need more carefully designed and customized instructions. To this end, we propose PRoMPTd, an approach that rewrites the task prompt for each individual test input to be more specific, unambiguous, and complete, so as to provide better guidance to the task LLM. We evaluated PRoMPTd on eight datasets covering tasks including arithmetics, logical reasoning, and code generation, using GPT-4 as the task LLM. Notably, PRoMPTd achieves an absolute improvement of around 10% on the complex MATH dataset and 5% on the code generation task on HumanEval, outperforming conventional zero-shot methods. In addition, we also showed that the rewritten prompt can provide better interpretability of how the LLM resolves each test instance, which can potentially be leveraged as a defense mechanism against adversarial prompting. The source code and dataset can be obtained from https://github.com/salokr/PRoMPTd

Digital Twins for Patient Care via Knowledge Graphs and Closed-Form Continuous-Time Liquid Neural Networks

Digital twin technology has is anticipated to transform healthcare, enabling personalized medicines and support, earlier diagnoses, simulated treatment outcomes, and optimized surgical plans. Digital twins are readily gaining traction in industries like manufacturing, supply chain logistics, and civil infrastructure. Not in patient care, however. The challenge of modeling complex diseases with multimodal patient data and the computational complexities of analyzing it have stifled digital twin adoption in the biomedical vertical. Yet, these major obstacles can potentially be handled by approaching these models in a different way. This paper proposes a novel framework for addressing the barriers to clinical twin modeling created by computational costs and modeling complexities. We propose structuring patient health data as a knowledge graph and using closed-form continuous-time liquid neural networks, for real-time analytics. By synthesizing multimodal patient data and leveraging the flexibility and efficiency of closed form continuous time networks and knowledge graph ontologies, our approach enables real time insights, personalized medicine, early diagnosis and intervention, and optimal surgical planning. This novel approach provides a comprehensive and adaptable view of patient health along with real-time analytics, paving the way for digital twin simulations and other anticipated benefits in healthcare.

Interactive Model Cards: A Human-Centered Approach to Model Documentation

Deep learning models for natural language processing (NLP) are increasingly adopted and deployed by analysts without formal training in NLP or machine learning (ML). However, the documentation intended to convey the model's details and appropriate use is tailored primarily to individuals with ML or NLP expertise. To address this gap, we conduct a design inquiry into interactive model cards, which augment traditionally static model cards with affordances for exploring model documentation and interacting with the models themselves. Our investigation consists of an initial conceptual study with experts in ML, NLP, and AI Ethics, followed by a separate evaluative study with non-expert analysts who use ML models in their work. Using a semi-structured interview format coupled with a think-aloud protocol, we collected feedback from a total of 30 participants who engaged with different versions of standard and interactive model cards. Through a thematic analysis of the collected data, we identified several conceptual dimensions that summarize the strengths and limitations of standard and interactive model cards, including: stakeholders; design; guidance; understandability & interpretability; sensemaking & skepticism; and trust & safety. Our findings demonstrate the importance of carefully considered design and interactivity for orienting and supporting non-expert analysts using deep learning models, along with a need for consideration of broader sociotechnical contexts and organizational dynamics. We have also identified design elements, such as language, visual cues, and warnings, among others, that support interactivity and make non-interactive content accessible. We summarize our findings as design guidelines and discuss their implications for a human-centered approach towards AI/ML documentation.