metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3395988
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/LaBSE
widget:
- source_sentence: Tom grabbed Mary's elbow.
sentences:
- Tom, Mary'yi dirseğinden kavradı.
- Stay with her.
- Pourquoi a-t-il mangé l'abeille ?
- source_sentence: Жизнь - это тень.
sentences:
- Life is a shadow.
- I'm almost always at home on Sundays.
- Henüz bir vizem yok.
- source_sentence: Are you working tomorrow?
sentences:
- Yarın çalışacak mısın?
- Нобэ хуабей дыдэт.
- Мэри къэшэн имыIэну жеIэ.
- source_sentence: Вы нарушили закон.
sentences:
- Ахэр Iейщ.
- Tom war drei Tage nicht da.
- Vous avez enfreint la loi.
- source_sentence: We've never seen Tom this angry before.
sentences:
- Tom'u daha önce asla bu kadar öfkeli görmedik.
- Soyez attentive aux voleurs à la tire.
- Endişeli görünüyorsun.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on sentence-transformers/LaBSE
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: validation
type: validation
metrics:
- type: pearson_cosine
value: -0.2799955028525394
name: Pearson Cosine
- type: spearman_cosine
value: -0.32115994644018286
name: Spearman Cosine
SentenceTransformer based on sentence-transformers/LaBSE
This is a sentence-transformers model finetuned from sentence-transformers/LaBSE. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/LaBSE
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("panagoa/LaBSE-kbd-v0.2")
# Run inference
sentences = [
"We've never seen Tom this angry before.",
"Tom'u daha önce asla bu kadar öfkeli görmedik.",
'Soyez attentive aux voleurs à la tire.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
validation
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | -0.28 |
spearman_cosine | -0.3212 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,395,988 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 5 tokens
- mean: 10.33 tokens
- max: 50 tokens
- min: 5 tokens
- mean: 13.81 tokens
- max: 46 tokens
- min: 0.0
- mean: 0.36
- max: 0.98
- Samples:
sentence_0 sentence_1 label Почему вас это удивило?
Сыт ар щIывгъэщIэгъуар?
0.9298050403594972
Ребёнка кто-нибудь видел?
Quelqu'un a-t-il vu l'enfant ?
0.0
Marie se couchait.
Мэри гъуэлъырт.
0.9330472946166992
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 2multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss | validation_spearman_cosine |
---|---|---|---|
0.0005 | 100 | - | -0.7761 |
0.0009 | 200 | - | -0.7598 |
0.0014 | 300 | - | -0.7485 |
0.0019 | 400 | - | -0.7412 |
0.0024 | 500 | 0.2864 | -0.7354 |
0.0028 | 600 | - | -0.7307 |
0.0033 | 700 | - | -0.7191 |
0.0038 | 800 | - | -0.7206 |
0.0042 | 900 | - | -0.7197 |
0.0047 | 1000 | 0.0463 | -0.7037 |
0.0052 | 1100 | - | -0.6866 |
0.0057 | 1200 | - | -0.6798 |
0.0061 | 1300 | - | -0.6844 |
0.0066 | 1400 | - | -0.6716 |
0.0071 | 1500 | 0.0184 | -0.6658 |
0.0075 | 1600 | - | -0.6620 |
0.0080 | 1700 | - | -0.6532 |
0.0085 | 1800 | - | -0.6455 |
0.0090 | 1900 | - | -0.6452 |
0.0094 | 2000 | 0.011 | -0.6360 |
0.0099 | 2100 | - | -0.6240 |
0.0104 | 2200 | - | -0.6220 |
0.0108 | 2300 | - | -0.6294 |
0.0113 | 2400 | - | -0.6038 |
0.0118 | 2500 | 0.0092 | -0.6116 |
0.0122 | 2600 | - | -0.5996 |
0.0127 | 2700 | - | -0.6120 |
0.0132 | 2800 | - | -0.5940 |
0.0137 | 2900 | - | -0.5848 |
0.0141 | 3000 | 0.0071 | -0.5958 |
0.0146 | 3100 | - | -0.5840 |
0.0151 | 3200 | - | -0.5944 |
0.0155 | 3300 | - | -0.5895 |
0.0160 | 3400 | - | -0.5849 |
0.0165 | 3500 | 0.0056 | -0.5708 |
0.0005 | 100 | - | -0.5686 |
0.0009 | 200 | - | -0.5608 |
0.0014 | 300 | - | -0.5587 |
0.0024 | 500 | 0.0053 | - |
0.0047 | 1000 | 0.0081 | -0.5882 |
0.0071 | 1500 | 0.0058 | - |
0.0094 | 2000 | 0.0064 | -0.5127 |
0.0118 | 2500 | 0.004 | - |
0.0141 | 3000 | 0.0042 | -0.4934 |
0.0165 | 3500 | 0.0048 | - |
0.0188 | 4000 | 0.0036 | -0.4762 |
0.0212 | 4500 | 0.0051 | - |
0.0236 | 5000 | 0.0054 | -0.4754 |
0.0259 | 5500 | 0.0054 | - |
0.0283 | 6000 | 0.0054 | -0.4609 |
0.0306 | 6500 | 0.0044 | - |
0.0330 | 7000 | 0.0048 | -0.4716 |
0.0353 | 7500 | 0.0061 | - |
0.0377 | 8000 | 0.0018 | -0.4293 |
0.0400 | 8500 | 0.0047 | - |
0.0424 | 9000 | 0.0043 | -0.4311 |
0.0448 | 9500 | 0.0034 | - |
0.0471 | 10000 | 0.0041 | -0.4429 |
0.0495 | 10500 | 0.0028 | - |
0.0518 | 11000 | 0.0032 | -0.4324 |
0.0542 | 11500 | 0.0025 | - |
0.0565 | 12000 | 0.0037 | -0.4374 |
0.0589 | 12500 | 0.003 | - |
0.0612 | 13000 | 0.005 | -0.4522 |
0.0636 | 13500 | 0.0051 | - |
0.0660 | 14000 | 0.0048 | -0.3994 |
0.0683 | 14500 | 0.0034 | - |
0.0707 | 15000 | 0.0032 | -0.4148 |
0.0730 | 15500 | 0.0046 | - |
0.0754 | 16000 | 0.0026 | -0.3848 |
0.0777 | 16500 | 0.0036 | - |
0.0801 | 17000 | 0.0051 | -0.3845 |
0.0824 | 17500 | 0.0031 | - |
0.0848 | 18000 | 0.0035 | -0.3500 |
0.0872 | 18500 | 0.0028 | - |
0.0895 | 19000 | 0.0021 | -0.3634 |
0.0919 | 19500 | 0.0025 | - |
0.0942 | 20000 | 0.0023 | -0.3428 |
0.0966 | 20500 | 0.0042 | - |
0.0989 | 21000 | 0.0038 | -0.3432 |
0.1013 | 21500 | 0.005 | - |
0.1037 | 22000 | 0.0024 | -0.3515 |
0.1060 | 22500 | 0.0029 | - |
0.1084 | 23000 | 0.0033 | -0.3929 |
0.1107 | 23500 | 0.003 | - |
0.1131 | 24000 | 0.0029 | -0.3309 |
0.1154 | 24500 | 0.0038 | - |
0.1178 | 25000 | 0.0028 | -0.3369 |
0.1201 | 25500 | 0.0025 | - |
0.1225 | 26000 | 0.002 | -0.3257 |
0.1249 | 26500 | 0.0025 | - |
0.1272 | 27000 | 0.0033 | -0.3659 |
0.1296 | 27500 | 0.0023 | - |
0.1319 | 28000 | 0.0031 | -0.3208 |
0.1343 | 28500 | 0.0027 | - |
0.1366 | 29000 | 0.0031 | -0.3298 |
0.1390 | 29500 | 0.0047 | - |
0.1413 | 30000 | 0.003 | -0.3460 |
0.1437 | 30500 | 0.004 | - |
0.1461 | 31000 | 0.0027 | -0.3567 |
0.1484 | 31500 | 0.0063 | - |
0.1508 | 32000 | 0.003 | -0.3382 |
0.1531 | 32500 | 0.0022 | - |
0.1555 | 33000 | 0.0048 | -0.3475 |
0.1578 | 33500 | 0.0021 | - |
0.1602 | 34000 | 0.0043 | -0.3323 |
0.1625 | 34500 | 0.0031 | - |
0.1649 | 35000 | 0.0024 | -0.3207 |
0.1673 | 35500 | 0.0029 | - |
0.1696 | 36000 | 0.0032 | -0.3004 |
0.1720 | 36500 | 0.0046 | - |
0.1743 | 37000 | 0.0033 | -0.3085 |
0.1767 | 37500 | 0.002 | - |
0.1790 | 38000 | 0.0022 | -0.3270 |
0.1814 | 38500 | 0.0036 | - |
0.1837 | 39000 | 0.0034 | -0.3042 |
0.1861 | 39500 | 0.0034 | - |
0.1885 | 40000 | 0.0016 | -0.3193 |
0.1908 | 40500 | 0.0026 | - |
0.1932 | 41000 | 0.0028 | -0.2945 |
0.1955 | 41500 | 0.0031 | - |
0.1979 | 42000 | 0.0016 | -0.2942 |
0.2002 | 42500 | 0.0021 | - |
0.2026 | 43000 | 0.003 | -0.2998 |
0.2049 | 43500 | 0.0042 | - |
0.2073 | 44000 | 0.0023 | -0.3245 |
0.2097 | 44500 | 0.0018 | - |
0.2120 | 45000 | 0.0021 | -0.3212 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}