layoutlm-with-funsd

This model is a fine-tuned version of pabloma09/layoutlm-with-funsd on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6344
  • Eader: {'precision': 0.4888888888888889, 'recall': 0.38596491228070173, 'f1': 0.4313725490196078, 'number': 57}
  • Nswer: {'precision': 0.577922077922078, 'recall': 0.6312056737588653, 'f1': 0.6033898305084746, 'number': 141}
  • Uestion: {'precision': 0.5172413793103449, 'recall': 0.5590062111801242, 'f1': 0.537313432835821, 'number': 161}
  • Overall Precision: 0.5389
  • Overall Recall: 0.5599
  • Overall F1: 0.5492
  • Overall Accuracy: 0.8364

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Eader Nswer Uestion Overall Precision Overall Recall Overall F1 Overall Accuracy
0.3894 1.0 9 0.5238 {'precision': 0.34782608695652173, 'recall': 0.2807017543859649, 'f1': 0.3106796116504854, 'number': 57} {'precision': 0.515527950310559, 'recall': 0.5886524822695035, 'f1': 0.5496688741721855, 'number': 141} {'precision': 0.4010989010989011, 'recall': 0.453416149068323, 'f1': 0.4256559766763849, 'number': 161} 0.4422 0.4791 0.4599 0.8174
0.3489 2.0 18 0.5037 {'precision': 0.2978723404255319, 'recall': 0.24561403508771928, 'f1': 0.2692307692307692, 'number': 57} {'precision': 0.5125, 'recall': 0.5815602836879432, 'f1': 0.5448504983388704, 'number': 141} {'precision': 0.4, 'recall': 0.4472049689440994, 'f1': 0.42228739002932547, 'number': 161} 0.4341 0.4680 0.4504 0.8270
0.2657 3.0 27 0.5258 {'precision': 0.3333333333333333, 'recall': 0.2807017543859649, 'f1': 0.3047619047619048, 'number': 57} {'precision': 0.5123456790123457, 'recall': 0.5886524822695035, 'f1': 0.5478547854785478, 'number': 141} {'precision': 0.3901098901098901, 'recall': 0.4409937888198758, 'f1': 0.4139941690962099, 'number': 161} 0.4337 0.4735 0.4527 0.8261
0.1907 4.0 36 0.5390 {'precision': 0.38461538461538464, 'recall': 0.2631578947368421, 'f1': 0.3125, 'number': 57} {'precision': 0.5827814569536424, 'recall': 0.624113475177305, 'f1': 0.6027397260273973, 'number': 141} {'precision': 0.47878787878787876, 'recall': 0.4906832298136646, 'f1': 0.48466257668711654, 'number': 161} 0.5127 0.5070 0.5098 0.8286
0.175 5.0 45 0.5489 {'precision': 0.42105263157894735, 'recall': 0.2807017543859649, 'f1': 0.3368421052631579, 'number': 57} {'precision': 0.5246913580246914, 'recall': 0.6028368794326241, 'f1': 0.561056105610561, 'number': 141} {'precision': 0.449438202247191, 'recall': 0.4968944099378882, 'f1': 0.471976401179941, 'number': 161} 0.4788 0.5042 0.4912 0.8361
0.1685 6.0 54 0.5678 {'precision': 0.4, 'recall': 0.2807017543859649, 'f1': 0.32989690721649484, 'number': 57} {'precision': 0.5769230769230769, 'recall': 0.6382978723404256, 'f1': 0.6060606060606061, 'number': 141} {'precision': 0.45901639344262296, 'recall': 0.5217391304347826, 'f1': 0.4883720930232558, 'number': 161} 0.5013 0.5292 0.5149 0.8370
0.1156 7.0 63 0.5749 {'precision': 0.4864864864864865, 'recall': 0.3157894736842105, 'f1': 0.3829787234042553, 'number': 57} {'precision': 0.50920245398773, 'recall': 0.5886524822695035, 'f1': 0.5460526315789473, 'number': 141} {'precision': 0.43575418994413406, 'recall': 0.484472049689441, 'f1': 0.45882352941176474, 'number': 161} 0.4723 0.4986 0.4851 0.8409
0.1019 8.0 72 0.5907 {'precision': 0.43137254901960786, 'recall': 0.38596491228070173, 'f1': 0.40740740740740744, 'number': 57} {'precision': 0.5408805031446541, 'recall': 0.6099290780141844, 'f1': 0.5733333333333333, 'number': 141} {'precision': 0.5113636363636364, 'recall': 0.5590062111801242, 'f1': 0.5341246290801187, 'number': 161} 0.5130 0.5515 0.5315 0.8337
0.0885 9.0 81 0.5899 {'precision': 0.5, 'recall': 0.43859649122807015, 'f1': 0.46728971962616817, 'number': 57} {'precision': 0.55, 'recall': 0.624113475177305, 'f1': 0.584717607973422, 'number': 141} {'precision': 0.5084745762711864, 'recall': 0.5590062111801242, 'f1': 0.5325443786982249, 'number': 161} 0.5245 0.5655 0.5442 0.8400
0.0852 10.0 90 0.6170 {'precision': 0.45454545454545453, 'recall': 0.3508771929824561, 'f1': 0.396039603960396, 'number': 57} {'precision': 0.564935064935065, 'recall': 0.6170212765957447, 'f1': 0.5898305084745763, 'number': 141} {'precision': 0.5027932960893855, 'recall': 0.5590062111801242, 'f1': 0.5294117647058824, 'number': 161} 0.5225 0.5487 0.5353 0.8364
0.0854 11.0 99 0.6107 {'precision': 0.5111111111111111, 'recall': 0.40350877192982454, 'f1': 0.45098039215686275, 'number': 57} {'precision': 0.5506329113924051, 'recall': 0.6170212765957447, 'f1': 0.5819397993311038, 'number': 141} {'precision': 0.5113636363636364, 'recall': 0.5590062111801242, 'f1': 0.5341246290801187, 'number': 161} 0.5277 0.5571 0.5420 0.8358
0.0665 12.0 108 0.6090 {'precision': 0.5111111111111111, 'recall': 0.40350877192982454, 'f1': 0.45098039215686275, 'number': 57} {'precision': 0.5365853658536586, 'recall': 0.624113475177305, 'f1': 0.5770491803278689, 'number': 141} {'precision': 0.4946236559139785, 'recall': 0.5714285714285714, 'f1': 0.5302593659942363, 'number': 161} 0.5139 0.5655 0.5385 0.8464
0.0632 13.0 117 0.6200 {'precision': 0.44680851063829785, 'recall': 0.3684210526315789, 'f1': 0.40384615384615385, 'number': 57} {'precision': 0.5370370370370371, 'recall': 0.6170212765957447, 'f1': 0.5742574257425743, 'number': 141} {'precision': 0.4945054945054945, 'recall': 0.5590062111801242, 'f1': 0.5247813411078717, 'number': 161} 0.5064 0.5515 0.528 0.8412
0.0758 14.0 126 0.6326 {'precision': 0.5, 'recall': 0.38596491228070173, 'f1': 0.43564356435643564, 'number': 57} {'precision': 0.5705128205128205, 'recall': 0.6312056737588653, 'f1': 0.5993265993265993, 'number': 141} {'precision': 0.5142857142857142, 'recall': 0.5590062111801242, 'f1': 0.5357142857142856, 'number': 161} 0.536 0.5599 0.5477 0.8382
0.0573 15.0 135 0.6344 {'precision': 0.4888888888888889, 'recall': 0.38596491228070173, 'f1': 0.4313725490196078, 'number': 57} {'precision': 0.577922077922078, 'recall': 0.6312056737588653, 'f1': 0.6033898305084746, 'number': 141} {'precision': 0.5172413793103449, 'recall': 0.5590062111801242, 'f1': 0.537313432835821, 'number': 161} 0.5389 0.5599 0.5492 0.8364

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
56
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for pabloma09/layoutlm-with-funsd

Unable to build the model tree, the base model loops to the model itself. Learn more.