pabloma09 commited on
Commit
85e63d5
·
verified ·
1 Parent(s): d6bcf2f

End of training

Browse files
README.md CHANGED
@@ -16,14 +16,14 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.1967
20
- - Eader: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10}
21
- - Nswer: {'precision': 0.8354430379746836, 'recall': 0.88, 'f1': 0.8571428571428572, 'number': 75}
22
- - Uestion: {'precision': 0.8571428571428571, 'recall': 0.868421052631579, 'f1': 0.8627450980392157, 'number': 76}
23
- - Overall Precision: 0.8554
24
- - Overall Recall: 0.8820
25
- - Overall F1: 0.8685
26
- - Overall Accuracy: 0.9435
27
 
28
  ## Model description
29
 
@@ -53,23 +53,23 @@ The following hyperparameters were used during training:
53
 
54
  ### Training results
55
 
56
- | Training Loss | Epoch | Step | Validation Loss | Eader | Nswer | Uestion | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
57
- |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
58
- | 1.1495 | 1.0 | 4 | 1.0698 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.2, 'recall': 0.013333333333333334, 'f1': 0.025, 'number': 75} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 76} | 0.0909 | 0.0062 | 0.0116 | 0.4960 |
59
- | 0.9448 | 2.0 | 8 | 0.9517 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.2, 'recall': 0.013333333333333334, 'f1': 0.025, 'number': 75} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 76} | 0.0909 | 0.0062 | 0.0116 | 0.5 |
60
- | 0.8403 | 3.0 | 12 | 0.7857 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.4927536231884058, 'recall': 0.4533333333333333, 'f1': 0.4722222222222222, 'number': 75} | {'precision': 0.3684210526315789, 'recall': 0.3684210526315789, 'f1': 0.3684210526315789, 'number': 76} | 0.4189 | 0.3851 | 0.4013 | 0.6633 |
61
- | 0.6355 | 4.0 | 16 | 0.6129 | {'precision': 0.2857142857142857, 'recall': 0.2, 'f1': 0.23529411764705882, 'number': 10} | {'precision': 0.5353535353535354, 'recall': 0.7066666666666667, 'f1': 0.6091954022988506, 'number': 75} | {'precision': 0.5865384615384616, 'recall': 0.8026315789473685, 'f1': 0.6777777777777778, 'number': 76} | 0.5524 | 0.7205 | 0.6253 | 0.7802 |
62
- | 0.4708 | 5.0 | 20 | 0.4714 | {'precision': 0.5555555555555556, 'recall': 0.5, 'f1': 0.5263157894736842, 'number': 10} | {'precision': 0.6853932584269663, 'recall': 0.8133333333333334, 'f1': 0.7439024390243902, 'number': 75} | {'precision': 0.6956521739130435, 'recall': 0.8421052631578947, 'f1': 0.761904761904762, 'number': 76} | 0.6842 | 0.8075 | 0.7407 | 0.8387 |
63
- | 0.3531 | 6.0 | 24 | 0.3538 | {'precision': 0.8, 'recall': 0.8, 'f1': 0.8000000000000002, 'number': 10} | {'precision': 0.7471264367816092, 'recall': 0.8666666666666667, 'f1': 0.8024691358024691, 'number': 75} | {'precision': 0.7764705882352941, 'recall': 0.868421052631579, 'f1': 0.8198757763975155, 'number': 76} | 0.7637 | 0.8634 | 0.8105 | 0.8831 |
64
- | 0.2414 | 7.0 | 28 | 0.2841 | {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 10} | {'precision': 0.7804878048780488, 'recall': 0.8533333333333334, 'f1': 0.8152866242038218, 'number': 75} | {'precision': 0.7804878048780488, 'recall': 0.8421052631578947, 'f1': 0.810126582278481, 'number': 76} | 0.7874 | 0.8509 | 0.8179 | 0.9133 |
65
- | 0.2138 | 8.0 | 32 | 0.2437 | {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 10} | {'precision': 0.7875, 'recall': 0.84, 'f1': 0.8129032258064516, 'number': 75} | {'precision': 0.7682926829268293, 'recall': 0.8289473684210527, 'f1': 0.7974683544303798, 'number': 76} | 0.7849 | 0.8385 | 0.8108 | 0.9294 |
66
- | 0.2558 | 9.0 | 36 | 0.2162 | {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 10} | {'precision': 0.8, 'recall': 0.8533333333333334, 'f1': 0.8258064516129033, 'number': 75} | {'precision': 0.8441558441558441, 'recall': 0.8552631578947368, 'f1': 0.8496732026143792, 'number': 76} | 0.8263 | 0.8571 | 0.8415 | 0.9375 |
67
- | 0.1247 | 10.0 | 40 | 0.2025 | {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 10} | {'precision': 0.8, 'recall': 0.8533333333333334, 'f1': 0.8258064516129033, 'number': 75} | {'precision': 0.8441558441558441, 'recall': 0.8552631578947368, 'f1': 0.8496732026143792, 'number': 76} | 0.8263 | 0.8571 | 0.8415 | 0.9375 |
68
- | 0.1053 | 11.0 | 44 | 0.2047 | {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 10} | {'precision': 0.810126582278481, 'recall': 0.8533333333333334, 'f1': 0.8311688311688312, 'number': 75} | {'precision': 0.8421052631578947, 'recall': 0.8421052631578947, 'f1': 0.8421052631578947, 'number': 76} | 0.8303 | 0.8509 | 0.8405 | 0.9375 |
69
- | 0.1101 | 12.0 | 48 | 0.2053 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.810126582278481, 'recall': 0.8533333333333334, 'f1': 0.8311688311688312, 'number': 75} | {'precision': 0.8421052631578947, 'recall': 0.8421052631578947, 'f1': 0.8421052631578947, 'number': 76} | 0.8364 | 0.8571 | 0.8466 | 0.9395 |
70
- | 0.0894 | 13.0 | 52 | 0.2016 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.810126582278481, 'recall': 0.8533333333333334, 'f1': 0.8311688311688312, 'number': 75} | {'precision': 0.8421052631578947, 'recall': 0.8421052631578947, 'f1': 0.8421052631578947, 'number': 76} | 0.8364 | 0.8571 | 0.8466 | 0.9395 |
71
- | 0.1657 | 14.0 | 56 | 0.1980 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.8354430379746836, 'recall': 0.88, 'f1': 0.8571428571428572, 'number': 75} | {'precision': 0.8571428571428571, 'recall': 0.868421052631579, 'f1': 0.8627450980392157, 'number': 76} | 0.8554 | 0.8820 | 0.8685 | 0.9435 |
72
- | 0.0884 | 15.0 | 60 | 0.1967 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.8354430379746836, 'recall': 0.88, 'f1': 0.8571428571428572, 'number': 75} | {'precision': 0.8571428571428571, 'recall': 0.868421052631579, 'f1': 0.8627450980392157, 'number': 76} | 0.8554 | 0.8820 | 0.8685 | 0.9435 |
73
 
74
 
75
  ### Framework versions
 
16
 
17
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 0.8302
20
+ - Eader: {'precision': 0.4444444444444444, 'recall': 0.25, 'f1': 0.32, 'number': 32}
21
+ - Nswer: {'precision': 0.45569620253164556, 'recall': 0.5142857142857142, 'f1': 0.4832214765100671, 'number': 70}
22
+ - Uestion: {'precision': 0.4868421052631579, 'recall': 0.47435897435897434, 'f1': 0.48051948051948057, 'number': 78}
23
+ - Overall Precision: 0.4682
24
+ - Overall Recall: 0.45
25
+ - Overall F1: 0.4589
26
+ - Overall Accuracy: 0.7758
27
 
28
  ## Model description
29
 
 
53
 
54
  ### Training results
55
 
56
+ | Training Loss | Epoch | Step | Validation Loss | Eader | Nswer | Uestion | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
58
+ | 1.2754 | 1.0 | 13 | 1.0702 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 32} | {'precision': 0.046413502109704644, 'recall': 0.15714285714285714, 'f1': 0.07166123778501629, 'number': 70} | {'precision': 0.05063291139240506, 'recall': 0.15384615384615385, 'f1': 0.0761904761904762, 'number': 78} | 0.0485 | 0.1278 | 0.0703 | 0.5865 |
59
+ | 0.8597 | 2.0 | 26 | 0.7226 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 32} | {'precision': 0.30097087378640774, 'recall': 0.44285714285714284, 'f1': 0.3583815028901734, 'number': 70} | {'precision': 0.2647058823529412, 'recall': 0.34615384615384615, 'f1': 0.29999999999999993, 'number': 78} | 0.2723 | 0.3222 | 0.2952 | 0.7685 |
60
+ | 0.624 | 3.0 | 39 | 0.6206 | {'precision': 0.1875, 'recall': 0.09375, 'f1': 0.125, 'number': 32} | {'precision': 0.36470588235294116, 'recall': 0.44285714285714284, 'f1': 0.3999999999999999, 'number': 70} | {'precision': 0.4533333333333333, 'recall': 0.4358974358974359, 'f1': 0.44444444444444436, 'number': 78} | 0.3864 | 0.3778 | 0.3820 | 0.8065 |
61
+ | 0.4821 | 4.0 | 52 | 0.6513 | {'precision': 0.3125, 'recall': 0.15625, 'f1': 0.20833333333333334, 'number': 32} | {'precision': 0.3707865168539326, 'recall': 0.4714285714285714, 'f1': 0.41509433962264153, 'number': 70} | {'precision': 0.4050632911392405, 'recall': 0.41025641025641024, 'f1': 0.4076433121019108, 'number': 78} | 0.3804 | 0.3889 | 0.3846 | 0.7637 |
62
+ | 0.371 | 5.0 | 65 | 0.7466 | {'precision': 0.36363636363636365, 'recall': 0.25, 'f1': 0.2962962962962963, 'number': 32} | {'precision': 0.4069767441860465, 'recall': 0.5, 'f1': 0.4487179487179487, 'number': 70} | {'precision': 0.40476190476190477, 'recall': 0.4358974358974359, 'f1': 0.4197530864197531, 'number': 78} | 0.4010 | 0.4278 | 0.4140 | 0.7131 |
63
+ | 0.3068 | 6.0 | 78 | 0.6943 | {'precision': 0.4444444444444444, 'recall': 0.25, 'f1': 0.32, 'number': 32} | {'precision': 0.42857142857142855, 'recall': 0.5142857142857142, 'f1': 0.4675324675324675, 'number': 70} | {'precision': 0.44871794871794873, 'recall': 0.44871794871794873, 'f1': 0.44871794871794873, 'number': 78} | 0.4389 | 0.4389 | 0.4389 | 0.7498 |
64
+ | 0.2523 | 7.0 | 91 | 0.7129 | {'precision': 0.4117647058823529, 'recall': 0.21875, 'f1': 0.2857142857142857, 'number': 32} | {'precision': 0.3950617283950617, 'recall': 0.45714285714285713, 'f1': 0.423841059602649, 'number': 70} | {'precision': 0.4788732394366197, 'recall': 0.4358974358974359, 'f1': 0.45637583892617445, 'number': 78} | 0.4320 | 0.4056 | 0.4183 | 0.7728 |
65
+ | 0.2073 | 8.0 | 104 | 0.8039 | {'precision': 0.4, 'recall': 0.25, 'f1': 0.3076923076923077, 'number': 32} | {'precision': 0.546875, 'recall': 0.5, 'f1': 0.5223880597014925, 'number': 70} | {'precision': 0.4864864864864865, 'recall': 0.46153846153846156, 'f1': 0.47368421052631576, 'number': 78} | 0.5 | 0.4389 | 0.4675 | 0.7426 |
66
+ | 0.1673 | 9.0 | 117 | 0.7874 | {'precision': 0.3157894736842105, 'recall': 0.1875, 'f1': 0.23529411764705882, 'number': 32} | {'precision': 0.4583333333333333, 'recall': 0.4714285714285714, 'f1': 0.46478873239436613, 'number': 70} | {'precision': 0.4722222222222222, 'recall': 0.4358974358974359, 'f1': 0.45333333333333337, 'number': 78} | 0.4479 | 0.4056 | 0.4257 | 0.7559 |
67
+ | 0.1556 | 10.0 | 130 | 0.7440 | {'precision': 0.42105263157894735, 'recall': 0.25, 'f1': 0.3137254901960784, 'number': 32} | {'precision': 0.4931506849315068, 'recall': 0.5142857142857142, 'f1': 0.5034965034965034, 'number': 70} | {'precision': 0.4794520547945205, 'recall': 0.44871794871794873, 'f1': 0.4635761589403974, 'number': 78} | 0.4788 | 0.4389 | 0.4580 | 0.7860 |
68
+ | 0.1304 | 11.0 | 143 | 0.8451 | {'precision': 0.42105263157894735, 'recall': 0.25, 'f1': 0.3137254901960784, 'number': 32} | {'precision': 0.45, 'recall': 0.5142857142857142, 'f1': 0.48, 'number': 70} | {'precision': 0.45, 'recall': 0.46153846153846156, 'f1': 0.45569620253164556, 'number': 78} | 0.4469 | 0.4444 | 0.4457 | 0.7655 |
69
+ | 0.1231 | 12.0 | 156 | 0.9197 | {'precision': 0.375, 'recall': 0.28125, 'f1': 0.32142857142857145, 'number': 32} | {'precision': 0.49295774647887325, 'recall': 0.5, 'f1': 0.49645390070921985, 'number': 70} | {'precision': 0.44871794871794873, 'recall': 0.44871794871794873, 'f1': 0.44871794871794873, 'number': 78} | 0.4566 | 0.4389 | 0.4476 | 0.7432 |
70
+ | 0.1062 | 13.0 | 169 | 0.8122 | {'precision': 0.47368421052631576, 'recall': 0.28125, 'f1': 0.35294117647058826, 'number': 32} | {'precision': 0.47368421052631576, 'recall': 0.5142857142857142, 'f1': 0.4931506849315068, 'number': 70} | {'precision': 0.5135135135135135, 'recall': 0.48717948717948717, 'f1': 0.5, 'number': 78} | 0.4911 | 0.4611 | 0.4756 | 0.7836 |
71
+ | 0.1072 | 14.0 | 182 | 0.8369 | {'precision': 0.391304347826087, 'recall': 0.28125, 'f1': 0.3272727272727273, 'number': 32} | {'precision': 0.43037974683544306, 'recall': 0.4857142857142857, 'f1': 0.4563758389261745, 'number': 70} | {'precision': 0.46153846153846156, 'recall': 0.46153846153846156, 'f1': 0.46153846153846156, 'number': 78} | 0.4389 | 0.4389 | 0.4389 | 0.7746 |
72
+ | 0.1028 | 15.0 | 195 | 0.8302 | {'precision': 0.4444444444444444, 'recall': 0.25, 'f1': 0.32, 'number': 32} | {'precision': 0.45569620253164556, 'recall': 0.5142857142857142, 'f1': 0.4832214765100671, 'number': 70} | {'precision': 0.4868421052631579, 'recall': 0.47435897435897434, 'f1': 0.48051948051948057, 'number': 78} | 0.4682 | 0.45 | 0.4589 | 0.7758 |
73
 
74
 
75
  ### Framework versions
logs/events.out.tfevents.1741078328.DESKTOP-HA84SVN.3577307.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6243972c8253a154c1e168c7fec7fa003353c3aa4d76ab3e302b20c7736ae525
3
- size 14363
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce89c9557f4c80c2ba79d34b3d7be3d502d34568687b8c76e2c86b33e6f0f0ba
3
+ size 16147