End of training
Browse files
README.md
CHANGED
@@ -16,14 +16,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 0.
|
20 |
-
- Eader: {'precision':
|
21 |
-
- Nswer: {'precision': 0.
|
22 |
-
- Uestion: {'precision': 0.
|
23 |
-
- Overall Precision: 0.
|
24 |
-
- Overall Recall: 0.
|
25 |
-
- Overall F1: 0.
|
26 |
-
- Overall Accuracy: 0.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -53,23 +53,23 @@ The following hyperparameters were used during training:
|
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
-
| Training Loss | Epoch | Step | Validation Loss | Eader
|
57 |
-
|
58 |
-
| 1.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
|
74 |
|
75 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.8302
|
20 |
+
- Eader: {'precision': 0.4444444444444444, 'recall': 0.25, 'f1': 0.32, 'number': 32}
|
21 |
+
- Nswer: {'precision': 0.45569620253164556, 'recall': 0.5142857142857142, 'f1': 0.4832214765100671, 'number': 70}
|
22 |
+
- Uestion: {'precision': 0.4868421052631579, 'recall': 0.47435897435897434, 'f1': 0.48051948051948057, 'number': 78}
|
23 |
+
- Overall Precision: 0.4682
|
24 |
+
- Overall Recall: 0.45
|
25 |
+
- Overall F1: 0.4589
|
26 |
+
- Overall Accuracy: 0.7758
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Eader | Nswer | Uestion | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
58 |
+
| 1.2754 | 1.0 | 13 | 1.0702 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 32} | {'precision': 0.046413502109704644, 'recall': 0.15714285714285714, 'f1': 0.07166123778501629, 'number': 70} | {'precision': 0.05063291139240506, 'recall': 0.15384615384615385, 'f1': 0.0761904761904762, 'number': 78} | 0.0485 | 0.1278 | 0.0703 | 0.5865 |
|
59 |
+
| 0.8597 | 2.0 | 26 | 0.7226 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 32} | {'precision': 0.30097087378640774, 'recall': 0.44285714285714284, 'f1': 0.3583815028901734, 'number': 70} | {'precision': 0.2647058823529412, 'recall': 0.34615384615384615, 'f1': 0.29999999999999993, 'number': 78} | 0.2723 | 0.3222 | 0.2952 | 0.7685 |
|
60 |
+
| 0.624 | 3.0 | 39 | 0.6206 | {'precision': 0.1875, 'recall': 0.09375, 'f1': 0.125, 'number': 32} | {'precision': 0.36470588235294116, 'recall': 0.44285714285714284, 'f1': 0.3999999999999999, 'number': 70} | {'precision': 0.4533333333333333, 'recall': 0.4358974358974359, 'f1': 0.44444444444444436, 'number': 78} | 0.3864 | 0.3778 | 0.3820 | 0.8065 |
|
61 |
+
| 0.4821 | 4.0 | 52 | 0.6513 | {'precision': 0.3125, 'recall': 0.15625, 'f1': 0.20833333333333334, 'number': 32} | {'precision': 0.3707865168539326, 'recall': 0.4714285714285714, 'f1': 0.41509433962264153, 'number': 70} | {'precision': 0.4050632911392405, 'recall': 0.41025641025641024, 'f1': 0.4076433121019108, 'number': 78} | 0.3804 | 0.3889 | 0.3846 | 0.7637 |
|
62 |
+
| 0.371 | 5.0 | 65 | 0.7466 | {'precision': 0.36363636363636365, 'recall': 0.25, 'f1': 0.2962962962962963, 'number': 32} | {'precision': 0.4069767441860465, 'recall': 0.5, 'f1': 0.4487179487179487, 'number': 70} | {'precision': 0.40476190476190477, 'recall': 0.4358974358974359, 'f1': 0.4197530864197531, 'number': 78} | 0.4010 | 0.4278 | 0.4140 | 0.7131 |
|
63 |
+
| 0.3068 | 6.0 | 78 | 0.6943 | {'precision': 0.4444444444444444, 'recall': 0.25, 'f1': 0.32, 'number': 32} | {'precision': 0.42857142857142855, 'recall': 0.5142857142857142, 'f1': 0.4675324675324675, 'number': 70} | {'precision': 0.44871794871794873, 'recall': 0.44871794871794873, 'f1': 0.44871794871794873, 'number': 78} | 0.4389 | 0.4389 | 0.4389 | 0.7498 |
|
64 |
+
| 0.2523 | 7.0 | 91 | 0.7129 | {'precision': 0.4117647058823529, 'recall': 0.21875, 'f1': 0.2857142857142857, 'number': 32} | {'precision': 0.3950617283950617, 'recall': 0.45714285714285713, 'f1': 0.423841059602649, 'number': 70} | {'precision': 0.4788732394366197, 'recall': 0.4358974358974359, 'f1': 0.45637583892617445, 'number': 78} | 0.4320 | 0.4056 | 0.4183 | 0.7728 |
|
65 |
+
| 0.2073 | 8.0 | 104 | 0.8039 | {'precision': 0.4, 'recall': 0.25, 'f1': 0.3076923076923077, 'number': 32} | {'precision': 0.546875, 'recall': 0.5, 'f1': 0.5223880597014925, 'number': 70} | {'precision': 0.4864864864864865, 'recall': 0.46153846153846156, 'f1': 0.47368421052631576, 'number': 78} | 0.5 | 0.4389 | 0.4675 | 0.7426 |
|
66 |
+
| 0.1673 | 9.0 | 117 | 0.7874 | {'precision': 0.3157894736842105, 'recall': 0.1875, 'f1': 0.23529411764705882, 'number': 32} | {'precision': 0.4583333333333333, 'recall': 0.4714285714285714, 'f1': 0.46478873239436613, 'number': 70} | {'precision': 0.4722222222222222, 'recall': 0.4358974358974359, 'f1': 0.45333333333333337, 'number': 78} | 0.4479 | 0.4056 | 0.4257 | 0.7559 |
|
67 |
+
| 0.1556 | 10.0 | 130 | 0.7440 | {'precision': 0.42105263157894735, 'recall': 0.25, 'f1': 0.3137254901960784, 'number': 32} | {'precision': 0.4931506849315068, 'recall': 0.5142857142857142, 'f1': 0.5034965034965034, 'number': 70} | {'precision': 0.4794520547945205, 'recall': 0.44871794871794873, 'f1': 0.4635761589403974, 'number': 78} | 0.4788 | 0.4389 | 0.4580 | 0.7860 |
|
68 |
+
| 0.1304 | 11.0 | 143 | 0.8451 | {'precision': 0.42105263157894735, 'recall': 0.25, 'f1': 0.3137254901960784, 'number': 32} | {'precision': 0.45, 'recall': 0.5142857142857142, 'f1': 0.48, 'number': 70} | {'precision': 0.45, 'recall': 0.46153846153846156, 'f1': 0.45569620253164556, 'number': 78} | 0.4469 | 0.4444 | 0.4457 | 0.7655 |
|
69 |
+
| 0.1231 | 12.0 | 156 | 0.9197 | {'precision': 0.375, 'recall': 0.28125, 'f1': 0.32142857142857145, 'number': 32} | {'precision': 0.49295774647887325, 'recall': 0.5, 'f1': 0.49645390070921985, 'number': 70} | {'precision': 0.44871794871794873, 'recall': 0.44871794871794873, 'f1': 0.44871794871794873, 'number': 78} | 0.4566 | 0.4389 | 0.4476 | 0.7432 |
|
70 |
+
| 0.1062 | 13.0 | 169 | 0.8122 | {'precision': 0.47368421052631576, 'recall': 0.28125, 'f1': 0.35294117647058826, 'number': 32} | {'precision': 0.47368421052631576, 'recall': 0.5142857142857142, 'f1': 0.4931506849315068, 'number': 70} | {'precision': 0.5135135135135135, 'recall': 0.48717948717948717, 'f1': 0.5, 'number': 78} | 0.4911 | 0.4611 | 0.4756 | 0.7836 |
|
71 |
+
| 0.1072 | 14.0 | 182 | 0.8369 | {'precision': 0.391304347826087, 'recall': 0.28125, 'f1': 0.3272727272727273, 'number': 32} | {'precision': 0.43037974683544306, 'recall': 0.4857142857142857, 'f1': 0.4563758389261745, 'number': 70} | {'precision': 0.46153846153846156, 'recall': 0.46153846153846156, 'f1': 0.46153846153846156, 'number': 78} | 0.4389 | 0.4389 | 0.4389 | 0.7746 |
|
72 |
+
| 0.1028 | 15.0 | 195 | 0.8302 | {'precision': 0.4444444444444444, 'recall': 0.25, 'f1': 0.32, 'number': 32} | {'precision': 0.45569620253164556, 'recall': 0.5142857142857142, 'f1': 0.4832214765100671, 'number': 70} | {'precision': 0.4868421052631579, 'recall': 0.47435897435897434, 'f1': 0.48051948051948057, 'number': 78} | 0.4682 | 0.45 | 0.4589 | 0.7758 |
|
73 |
|
74 |
|
75 |
### Framework versions
|
logs/events.out.tfevents.1741078328.DESKTOP-HA84SVN.3577307.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce89c9557f4c80c2ba79d34b3d7be3d502d34568687b8c76e2c86b33e6f0f0ba
|
3 |
+
size 16147
|