End of training
Browse files- README.md +25 -25
- logs/events.out.tfevents.1703159383.DESKTOP-HA84SVN.4393.0 +2 -2
- model.safetensors +1 -1
README.md
CHANGED
@@ -17,14 +17,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
-
- Answer: {'precision': 0.
|
22 |
-
- Header: {'precision': 0.
|
23 |
-
- Question: {'precision': 0.
|
24 |
-
- Overall Precision: 0.
|
25 |
-
- Overall Recall: 0.
|
26 |
-
- Overall F1: 0.
|
27 |
-
- Overall Accuracy: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -54,23 +54,23 @@ The following hyperparameters were used during training:
|
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
-
| Training Loss | Epoch | Step | Validation Loss | Answer
|
58 |
-
|
59 |
-
| 1.
|
60 |
-
| 1.
|
61 |
-
| 1.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
|
75 |
|
76 |
### Framework versions
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.7065
|
21 |
+
- Answer: {'precision': 0.7120708748615725, 'recall': 0.7948084054388134, 'f1': 0.7511682242990654, 'number': 809}
|
22 |
+
- Header: {'precision': 0.31746031746031744, 'recall': 0.33613445378151263, 'f1': 0.32653061224489793, 'number': 119}
|
23 |
+
- Question: {'precision': 0.7776809067131648, 'recall': 0.8375586854460094, 'f1': 0.8065099457504521, 'number': 1065}
|
24 |
+
- Overall Precision: 0.7238
|
25 |
+
- Overall Recall: 0.7903
|
26 |
+
- Overall F1: 0.7556
|
27 |
+
- Overall Accuracy: 0.7999
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
59 |
+
| 1.7682 | 1.0 | 10 | 1.5613 | {'precision': 0.029469548133595286, 'recall': 0.037082818294190356, 'f1': 0.03284072249589491, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.14761904761904762, 'recall': 0.14553990610328638, 'f1': 0.14657210401891252, 'number': 1065} | 0.0895 | 0.0928 | 0.0911 | 0.3814 |
|
60 |
+
| 1.4106 | 2.0 | 20 | 1.2321 | {'precision': 0.1530120481927711, 'recall': 0.15698393077873918, 'f1': 0.1549725442342892, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4595959595959596, 'recall': 0.5981220657276995, 'f1': 0.5197878416972664, 'number': 1065} | 0.3448 | 0.3833 | 0.3630 | 0.5884 |
|
61 |
+
| 1.0722 | 3.0 | 30 | 0.9239 | {'precision': 0.45864661654135336, 'recall': 0.5278121137206427, 'f1': 0.4908045977011494, 'number': 809} | {'precision': 0.034482758620689655, 'recall': 0.008403361344537815, 'f1': 0.013513513513513513, 'number': 119} | {'precision': 0.6172006745362564, 'recall': 0.6873239436619718, 'f1': 0.6503776099511329, 'number': 1065} | 0.5405 | 0.5820 | 0.5605 | 0.7059 |
|
62 |
+
| 0.813 | 4.0 | 40 | 0.7588 | {'precision': 0.6421404682274248, 'recall': 0.7119901112484549, 'f1': 0.675263774912075, 'number': 809} | {'precision': 0.17543859649122806, 'recall': 0.08403361344537816, 'f1': 0.11363636363636363, 'number': 119} | {'precision': 0.6691236691236692, 'recall': 0.7671361502347418, 'f1': 0.7147856517935257, 'number': 1065} | 0.6451 | 0.7040 | 0.6732 | 0.7672 |
|
63 |
+
| 0.6435 | 5.0 | 50 | 0.6978 | {'precision': 0.6810631229235881, 'recall': 0.7601977750309024, 'f1': 0.7184579439252335, 'number': 809} | {'precision': 0.33766233766233766, 'recall': 0.2184873949579832, 'f1': 0.2653061224489796, 'number': 119} | {'precision': 0.6998394863563403, 'recall': 0.8187793427230047, 'f1': 0.7546516659454782, 'number': 1065} | 0.6797 | 0.7592 | 0.7172 | 0.7834 |
|
64 |
+
| 0.5577 | 6.0 | 60 | 0.6803 | {'precision': 0.6797385620915033, 'recall': 0.7713226205191595, 'f1': 0.7226404169079328, 'number': 809} | {'precision': 0.31645569620253167, 'recall': 0.21008403361344538, 'f1': 0.25252525252525254, 'number': 119} | {'precision': 0.7280334728033473, 'recall': 0.8169014084507042, 'f1': 0.7699115044247787, 'number': 1065} | 0.6930 | 0.7622 | 0.7259 | 0.7920 |
|
65 |
+
| 0.4844 | 7.0 | 70 | 0.6678 | {'precision': 0.6868798235942668, 'recall': 0.7700865265760197, 'f1': 0.726107226107226, 'number': 809} | {'precision': 0.3157894736842105, 'recall': 0.25210084033613445, 'f1': 0.2803738317757009, 'number': 119} | {'precision': 0.7511032656663724, 'recall': 0.7990610328638498, 'f1': 0.7743403093721565, 'number': 1065} | 0.7044 | 0.7546 | 0.7287 | 0.7968 |
|
66 |
+
| 0.4396 | 8.0 | 80 | 0.6579 | {'precision': 0.7017543859649122, 'recall': 0.7911001236093943, 'f1': 0.7437536316095292, 'number': 809} | {'precision': 0.30927835051546393, 'recall': 0.25210084033613445, 'f1': 0.2777777777777778, 'number': 119} | {'precision': 0.7595486111111112, 'recall': 0.8215962441314554, 'f1': 0.7893549842129003, 'number': 1065} | 0.7149 | 0.7752 | 0.7439 | 0.8041 |
|
67 |
+
| 0.3704 | 9.0 | 90 | 0.6669 | {'precision': 0.7118834080717489, 'recall': 0.7849196538936959, 'f1': 0.7466196355085244, 'number': 809} | {'precision': 0.3064516129032258, 'recall': 0.31932773109243695, 'f1': 0.31275720164609055, 'number': 119} | {'precision': 0.7565217391304347, 'recall': 0.8169014084507042, 'f1': 0.7855530474040633, 'number': 1065} | 0.7124 | 0.7742 | 0.7420 | 0.7986 |
|
68 |
+
| 0.3414 | 10.0 | 100 | 0.6865 | {'precision': 0.7039911308203991, 'recall': 0.7849196538936959, 'f1': 0.7422559906487435, 'number': 809} | {'precision': 0.308411214953271, 'recall': 0.2773109243697479, 'f1': 0.29203539823008845, 'number': 119} | {'precision': 0.7589743589743589, 'recall': 0.8338028169014085, 'f1': 0.7946308724832215, 'number': 1065} | 0.7141 | 0.7807 | 0.7459 | 0.7986 |
|
69 |
+
| 0.3189 | 11.0 | 110 | 0.6830 | {'precision': 0.7093922651933702, 'recall': 0.7935723114956736, 'f1': 0.7491248541423571, 'number': 809} | {'precision': 0.2972972972972973, 'recall': 0.2773109243697479, 'f1': 0.28695652173913044, 'number': 119} | {'precision': 0.7759078830823738, 'recall': 0.8225352112676056, 'f1': 0.7985414767547857, 'number': 1065} | 0.7231 | 0.7782 | 0.7496 | 0.8025 |
|
70 |
+
| 0.2921 | 12.0 | 120 | 0.6976 | {'precision': 0.7194163860830527, 'recall': 0.792336217552534, 'f1': 0.7541176470588233, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.36134453781512604, 'f1': 0.34677419354838707, 'number': 119} | {'precision': 0.7757417102966842, 'recall': 0.8347417840375587, 'f1': 0.8041610131162371, 'number': 1065} | 0.7262 | 0.7893 | 0.7564 | 0.7987 |
|
71 |
+
| 0.2775 | 13.0 | 130 | 0.6988 | {'precision': 0.7120708748615725, 'recall': 0.7948084054388134, 'f1': 0.7511682242990654, 'number': 809} | {'precision': 0.34234234234234234, 'recall': 0.31932773109243695, 'f1': 0.33043478260869563, 'number': 119} | {'precision': 0.7779735682819383, 'recall': 0.8291079812206573, 'f1': 0.8027272727272727, 'number': 1065} | 0.7278 | 0.7847 | 0.7552 | 0.8008 |
|
72 |
+
| 0.2632 | 14.0 | 140 | 0.7080 | {'precision': 0.7189249720044792, 'recall': 0.7935723114956736, 'f1': 0.7544065804935369, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.3445378151260504, 'f1': 0.33884297520661155, 'number': 119} | {'precision': 0.7769028871391076, 'recall': 0.8338028169014085, 'f1': 0.8043478260869565, 'number': 1065} | 0.7277 | 0.7883 | 0.7567 | 0.8005 |
|
73 |
+
| 0.2666 | 15.0 | 150 | 0.7065 | {'precision': 0.7120708748615725, 'recall': 0.7948084054388134, 'f1': 0.7511682242990654, 'number': 809} | {'precision': 0.31746031746031744, 'recall': 0.33613445378151263, 'f1': 0.32653061224489793, 'number': 119} | {'precision': 0.7776809067131648, 'recall': 0.8375586854460094, 'f1': 0.8065099457504521, 'number': 1065} | 0.7238 | 0.7903 | 0.7556 | 0.7999 |
|
74 |
|
75 |
|
76 |
### Framework versions
|
logs/events.out.tfevents.1703159383.DESKTOP-HA84SVN.4393.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98ae78f4bc623d30a8d7e3a7b590a8b95bb449a22d16fe1a49050019be702461
|
3 |
+
size 14729
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450558212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a14a523164886dc3c5852d14cef949b23efda0f50afde0030d06e6845255c0c2
|
3 |
size 450558212
|