|
--- |
|
base_model: oyemade/w2v-bert-2.0-yoruba-CV17.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice_17_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: w2v-bert-2.0-yoruba-CV17.0 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: common_voice_17_0 |
|
type: common_voice_17_0 |
|
config: yo |
|
split: test |
|
args: yo |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.10649647551914651 |
|
language: |
|
- yo |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# w2v-bert-2.0-yoruba-CV17.0 |
|
|
|
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1095 |
|
- Wer: 0.1065 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 6 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:------:| |
|
| 0.3812 | 0.5102 | 100 | 0.3328 | 0.3070 | |
|
| 0.2283 | 1.0204 | 200 | 0.2721 | 0.2807 | |
|
| 0.1993 | 1.5306 | 300 | 0.3371 | 0.3481 | |
|
| 0.2045 | 2.0408 | 400 | 0.3514 | 0.3314 | |
|
| 0.2057 | 2.5510 | 500 | 0.3036 | 0.3086 | |
|
| 0.2193 | 3.0612 | 600 | 0.2904 | 0.2847 | |
|
| 0.1956 | 3.5714 | 700 | 0.2631 | 0.2534 | |
|
| 0.1717 | 4.0816 | 800 | 0.1923 | 0.1995 | |
|
| 0.1234 | 4.5918 | 900 | 0.1678 | 0.1732 | |
|
| 0.0995 | 5.1020 | 1000 | 0.1280 | 0.1341 | |
|
| 0.0614 | 5.6122 | 1100 | 0.1095 | 0.1065 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |