Dropping Downstream tasks using newly initialized parameters and weights ([classifier.bias & weights]) support domain-specific 𝗶𝗺𝗮𝗴𝗲 𝗰𝗹𝗮𝘀𝘀𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻. Based on siglip2-base-patch16-224 and DomainNet (single-domain, multi-source adaptation), with Fashion-MNIST for experimental testing. 🧤☄️
Models are trained with different parameter settings for experimental purposes only, with the intent of further development. Refer to the model page below for instructions on running it with Transformers 🤗.
Play with Orpheus TTS, a Llama-based Speech-LLM designed for high-quality, empathetic text-to-speech generation. This model has been fine-tuned to deliver human-level speech synthesis 🔥🗣️
✨ Visual Reasoning: Breaks down complex images step by step. ✨ Math & Science: Solves visual problems with high precision. ✨ Combines text & images for deeper understanding.