rg-preview

community

AI & ML interests

None defined yet.

rg-preview's activity

mlabonne 
posted an update about 2 months ago
view post
Post
6059
🆕 LLM Course 2025 edition!

I updated the LLM Scientist roadmap and added a ton of new information and references. It covers training, datasets, evaluation, quantization, and new trends like test-time compute scaling.

The LLM Course has been incredibly popular (41.3k stars!) and I've been touched to receive many, many messages about how it helped people in their careers.

I know how difficult this stuff can be, so I'm super proud of the impact it had. I want to keep updating it in 2025, especially with the LLM Engineer roadmap.

Thanks everyone, hope you'll enjoy it!

💻 LLM Course: https://huggingface.co/blog/mlabonne/llm-course
dvilasuero 
posted an update 3 months ago
view post
Post
2466
🌐 Announcing Global-MMLU: an improved MMLU Open dataset with evaluation coverage across 42 languages, built with Argilla and the Hugging Face community.

Global-MMLU is the result of months of work with the goal of advancing Multilingual LLM evaluation. It's been an amazing open science effort with collaborators from Cohere For AI, Mila - Quebec Artificial Intelligence Institute, EPFL, Massachusetts Institute of Technology, AI Singapore, National University of Singapore, KAIST, Instituto Superior Técnico, Carnegie Mellon University, CONICET, and University of Buenos Aires.

🏷️ +200 contributors used Argilla MMLU questions where regional, dialect, or cultural knowledge was required to answer correctly. 85% of the questions required Western-centric knowledge!

Thanks to this annotation process, the open dataset contains two subsets:

1. 🗽 Culturally Agnostic: no specific regional, cultural knowledge is required.
2. ⚖️ Culturally Sensitive: requires dialect, cultural knowledge or geographic knowledge to answer correctly.

Moreover, we provide high quality translations of 25 out of 42 languages, thanks again to the community and professional annotators leveraging Argilla on the Hub.

I hope this will ensure a better understanding of the limitations and challenges for making open AI useful for many languages.

Dataset: CohereForAI/Global-MMLU
dvilasuero 
posted an update 4 months ago
dvilasuero 
posted an update 4 months ago
view post
Post
693
Build datasets for AI on the Hugging Face Hub—10x easier than ever!

Today, I'm excited to share our biggest feature since we joined Hugging Face.

Here’s how it works:

1. Pick a dataset—upload your own or choose from 240K open datasets.
2. Paste the Hub dataset ID into Argilla and set up your labeling interface.
3. Share the URL with your team or the whole community!

And the best part? It’s:
- No code – no Python needed
- Integrated – all within the Hub
- Scalable – from solo labeling to 100s of contributors

I am incredibly proud of the team for shipping this after weeks of work and many quick iterations.

Let's make this sentence obsolete: "Everyone wants to do the model work, not the data work."


Read, share, and like the HF blog post:
https://huggingface.co/blog/argilla-ui-hub
dvilasuero 
posted an update 5 months ago
view post
Post
996
Big news! You can now build strong ML models without days of human labelling

You simply:
- Define your dataset, including annotation guidelines, labels and fields
- Optionally label some records manually.
- Use an LLM to auto label your data with a human (you? your team?) in the loop!

Get started with this blog post:
https://huggingface.co/blog/sdiazlor/custom-text-classifier-ai-human-feedback
dvilasuero 
posted an update 6 months ago
view post
Post
416
Explore FinePersonas, visually with Argilla and black-forest-labs/FLUX.1-schnell


Excited to share this space where the community can explore a tiny subset of FinePersonas

argilla/finepersonas


Dataset built with distilabel and Free Serveless endpoints

This is just a first step towards more interesting experiments with FinePersonas, for example can we use it to assess biases in text2image models?

If you have ideas I'd love to hear them in the comments!

mlabonne 
posted an update 8 months ago
view post
Post
19589
Large models are surprisingly bad storytellers.

I asked 8 LLMs to "Tell me a bedtime story about bears and waffles."

Claude 3.5 Sonnet and GPT-4o gave me the worst stories: no conflict, no moral, zero creativity.

In contrast, smaller models were quite creative and wrote stories involving talking waffle trees and bears ostracized for their love of waffles.

Here you can see a comparison between Claude 3.5 Sonnet and NeuralDaredevil-8B-abliterated. They both start with a family of bears but quickly diverge in terms of personality, conflict, etc.

I mapped it to the hero's journey to have some kind of framework. Prompt engineering can definitely help here, but it's still disappointing that the larger models don't create better stories right off the bat.

Do you know why smaller models outperform the frontier models here?
·
dvilasuero 
posted an update 9 months ago
view post
Post
8183
Today is a huge day in Argilla’s history. We couldn’t be more excited to share this with the community: we’re joining Hugging Face!

We’re embracing a larger mission, becoming part of a brilliant and kind team and a shared vision about the future of AI.

Over the past year, we’ve been collaborating with Hugging Face on countless projects: launching partner of Docker Spaces, empowering the community to clean Alpaca translations into Spanish and other languages, launching argilla/notus-7b-v1 building on Zephyr’s learnings, the Data is Better Together initiative with hundreds of community contributors, or releasing argilla/OpenHermesPreferences, one of the largest open preference tuning datasets

After more than 2,000 Slack messages and over 60 people collaborating for over a year, it already felt like we were part of the same team, pushing in the same direction. After a week of the smoothest transition you can imagine, we’re now the same team.

To those of you who’ve been following us, this won’t be a huge surprise, but it will be a big deal in the coming months. This acquisition means we’ll double down on empowering the community to build and collaborate on high quality datasets, we’ll bring full support for multimodal datasets, and we’ll be in a better place to collaborate with the Open Source AI community. For enterprises, this means that the Enterprise Hub will unlock highly requested features like single sign-on and integration with Inference Endpoints.

As a founder, I am proud of the Argilla team. We're now part of something bigger and a larger team but with the same values, culture, and goals. Grateful to have shared this journey with my beloved co-founders Paco and Amélie.

Finally, huge thanks to the Chief Llama Officer @osanseviero for sparking this and being such a great partner during the acquisition process.

Would love to answer any questions you have so feel free to add them below!
·
mlabonne 
posted an update 9 months ago
view post
Post
19058
✂️ Uncensor any LLM with abliteration

I wrote an article about abliteration and how NeuralDaredevil-8B was created. Beyond removing alignment, I believe it's an interesting technique with a lot of potential. It's basically fine-tuning without retraining.

In this article, we see how it works, implement it in Google Colab, and heal the abliterated model to recover the performance drop due to this technique. The final model is an uncensored and high-quality model with the highest MMLU score on the Open LLM Leaderboard (8B category).

https://huggingface.co/blog/mlabonne/abliteration
·
mlabonne 
posted an update 11 months ago
view post
Post
12802
🔁 AutoMerger created the best 7B model on the Open LLM Leaderboard

By randomly combining top models from the Open LLM Leaderboard, AutoMerger created YamshadowExperiment28-7B. The model is three weeks old and has been at the top of the leaderboard for a week now. It was created through a simple SLERP merge of:

- automerger/YamShadow-7B (another top model created by AutoMerger)
- yam-peleg/Experiment28-7B (a top model from @yam-peleg )

1/ On the Open LLM Leaderboard, it managed to outperform the excellent M7-7b model, which has been the #1 7B model for a while now.

2/ On the YALL leaderboard, YamshadowExperiment28-7B is ranked as the 9th best-performing automerge (but note that the scores are very close to each other). Compared to others, it does not perform particularly well on AGIEval or Bigbench.

3/ Thanks to @sam-paech , I have scores on EQ-Bench, where it managed to outperform all of my previous models. It even surpasses recent models such as DBRX instruct, Qwen1.5 32B Chat, and Cohere's Command R+.

Surprisingly, it does not support ChatML or Mistral Instruct, unlike my other merges (which are part of its family tree). Alpaca works well 99% of the time, but the model can sometimes produce a lot of "INST" tokens for no reason.

In my experiments, YamshadowExperiment28-7B doesn't seem smarter than other successful merges like AlphaMonarch. On the contrary, I found several mathematical or reasoning problems where it fails.

Considering these results, it looks like it might overfit the Open LLM Leaderboard. I guess it's anything but surprising when you randomly merge 156 models.

🤗 Model: automerger/YamshadowExperiment28-7B
🔁 AutoMerger: mlabonne/AutoMerger
mlabonne 
posted an update 12 months ago
view post
Post
9303
⚡ AutoQuant

AutoQuant is the evolution of my previous AutoGGUF notebook (https://colab.research.google.com/drive/1P646NEg33BZy4BfLDNpTz0V0lwIU3CHu). It allows you to quantize your models in five different formats:

- GGUF: perfect for inference on CPUs (and LM Studio)
- GPTQ/EXL2: fast inference on GPUs
- AWQ: super fast inference on GPUs with vLLM (https://github.com/vllm-project/vllm)
- HQQ: extreme quantization with decent 2-bit and 3-bit models

Once the model is converted, it automatically uploads it on the Hugging Face Hub. To quantize a 7B model, GGUF only needs a T4 GPU, while the other methods require an A100 GPU.

Here's an example of a model I quantized using HQQ and AutoQuant: mlabonne/AlphaMonarch-7B-2bit-HQQ

I hope you'll enjoy it and quantize lots of models! :)

💻 AutoQuant: https://colab.research.google.com/drive/1b6nqC7UZVt8bx4MksX7s656GXPM-eWw4
·
dvilasuero 
posted an update about 1 year ago
view post
Post
🔥 Community and Data Quality Are More For Alignment

A recipe to replicate SPIN (Self-Play Fine Tuning) with 30x less data:

🗣️ 50K samples vs 1.8K prompts curated by the 350+ amazing DIBT contributors.
⚗️ Distillation of Mistral Large instead of OpenAI
🙌 Open data & code with ⚗️distilabel

SPIN Paper:
Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models (2401.01335)

SPIN DIBT Collection with datasets and models:
argilla/dibt-prompt-collective-spin-65ef59062518776024395fc3

Repo:
https://github.com/argilla-io/distilabel-spin-dibt

Joint work with the amazing DIBT community 👇
@aashish1904 , @flozi00 , @sayhan , @munish0838 , @0-hero , @dvilasuero , @eren23 , @davanstrien , @ahnz , @BlackKakapo , @kitano-o , @mmhamdy , @sdiazlor , @Stopwolf , @gabrielmbmb , @tculler91 , @plaguss , @ignacioct , @Hugi-R , @davidberenstein1957 , @Korla , @alvarobartt , @Hugs4Llamas , @Sumandora , @nataliaElv , @jfcalvo , @Averill , @steventrouble , @vasilis , @aeros93 , @kayyshf , @thomasgauthier , @jeromebas , @Ameeeee , @ayoubelmhamdi , @TuringsSolutions , @efels , @Haleyok , @abrazador , @emessy , @Nindaleth , @burtenshaw , @vicgalle , @CortexPE , @casey-martin , @Leire-aguirre-eguiluz , @mrfakename , @Portias600kNeurons , @nathaliepett , @Filippo
·
dvilasuero 
posted an update about 1 year ago
view post
Post
🚀🧙🏼‍♂️Introducing OpenHermesPreferences: the largest open AI feedback dataset for RLHF & DPO

> Using LLMs to improve other LLMs, at scale!

Built in collaboration with the H4 Hugging Face team, it's a 1M preferences dataset on top of the amazing @teknium 's dataset.

Dataset:
argilla/OpenHermesPreferences

The dataset is another example of open collaboration:

> The H4 team created responses with Mixtral using llm-swarm

> Argilla created responses with NousResearch Hermes-2-Yi-34B using distilabel

> The H4 ranked these responses + original response with PairRM from AllenAI, University of Southern California, Zhejiang University ( @yuchenlin @DongfuTingle and colleagues)

We hope this dataset will help the community's research efforts towards understanding the role of AI feedback for LLM alignment.

We're particularly excited about the ability of filtering specific subsets to improve LLM skills like math or reasoning.

Here's how easy it is to filter by subset:

ds = load_dataset("HuggingFaceH4/OpenHermesPreferences", split="train")

# Get the categories of the source dataset
# ['airoboros2.2', 'CamelAI', 'caseus_custom', ...]
sources = ds.unique("source")

# Filter for a subset
ds_filtered = ds.filter(lambda x : x["source"] in ["metamath", "EvolInstruct_70k"], num_proc=6)


As usual, all the scripts to reproduce this work are available and open to the community!

argilla/OpenHermesPreferences

So fun collab between @vwxyzjn , @plaguss , @kashif , @philschmid & @lewtun !

Open Source AI FTW!
·
dvilasuero 
posted an update about 1 year ago
view post
Post
🤗 Data is better together!

Data is essential for training good AI systems. We believe that the amazing community built around open machine learning can also work on developing amazing datasets together.

To explore how this can be done, Argilla and Hugging Face are thrilled to announce a collaborative project where we’re asking Hugging Face community members to build a dataset consisting of LLM prompts collectively.

What are we doing?
Using an instance of Argilla — a powerful open-source data collaboration tool — hosted on the Hugging Face Hub, we are collecting ratings of prompts based on their quality.

How Can You Contribute?
It’s super simple to start contributing:

1. Sign up if you don’t have a Hugging Face account

2. Go to this Argilla Space and sign in: https://huggingface.co/spaces/DIBT/prompt-collective

3. Read the guidelines and start rating prompts!

You can also join the #data-is-better-together channel in the Hugging Face Discord.

Finally, to track the community progress we'll be updating this Gradio dashboard:

https://huggingface.co/spaces/DIBT/prompt-collective-dashboard
·
dvilasuero 
posted an update about 1 year ago
view post
Post
🚀 The Open Source AI community needs more open datasets for improving Open LLMs. Excited to share our new open dataset for boosting chat models:

🎉 Welcome Distilabel Capybara DPO, a multi-turn, high-quality preference dataset.

argilla/distilabel-capybara-dpo-7k-binarized

Why?
Best closed chat models are built on top of multi-turn dialogue preference data. The OSS community lacks these datasets. This dataset is the first in the series to close this gap.

Is this dataset useful?
To test this dataset, we've built our virtual launching partner:

🎉 Welcome CapybaraHermes, a preference tuned OpenHermes with increased second turn capabilities on MTBench

argilla/CapybaraHermes-2.5-Mistral-7B

As usual, models are the least important to us. We like to focus on the data. Our mission is to build and share high-quality datasets, sharing our methods in the open so the community can improve upon them.

That's why, we took some time to describe the full methodology on the dataset card, check it out and give us feedback! Data and methods are never perfect!

Finally, this is just a preview version and would love to collaborate with you to add more benchmarking results, what hyperparams work for DPO'ing models, what mix of datasets, etc.

Expect some more datasets in the coming weeks. Let's build the best data for AI, together.
  • 1 reply
·
mlabonne 
posted an update about 1 year ago
view post
Post
🌳 Model Family Tree

Merging models has become a powerful way to compress information and build powerful models for cheap. Right now, the process is still quite experimental: which models to merge? which parameters should I use? We have some intuition but no principled approach.

I made a little tool to make things a little clearer. It allows you to visualize the family tree of any model on the Hub. It also displays the type of license they use: permissive (green), noncommercial (red), and unknown (gray). It should help people select the right license based on the parent models.

In addition, I hope it can be refined to extract more information about these models: do models from very different branches work better when merged? Can we select them based on the weight difference? There are a lot of questions to explore in this new space. :)

Here's a link to the colab notebook I made: https://colab.research.google.com/drive/1s2eQlolcI1VGgDhqWIANfkfKvcKrMyNr
If you want to know more about model merging or build you own merges, here's the article I wrote about this topic: https://huggingface.co/blog/mlabonne/merge-models
·
dvilasuero 
posted an update about 1 year ago
view post
Post
🔥 Less is more for DPO, high quality matters!

📢 Dropping our first open dataset and LLM of the year:

💾Meet distilabel Orca Pairs DPO, an improved version of the now famous dataset from Intel:

argilla/distilabel-intel-orca-dpo-pairs


🏛️ And a new OpenHermes fine-tune outperforming baselines with 54% less DPO pairs:

https://huggingface.co/argilla/distilabeled-Hermes-2.5-Mistral-7B

You can use this new dataset for your DPO tuning, just like this:


from datasets import load_dataset

# Instead of this:
# dataset = load_dataset("Intel/orca_dpo_pairs", split="train")

# use this:
dataset = load_dataset("argilla/distilabel-intel-orca-dpo-pairs", split="train")

dataset = dataset.filter(
    lambda r: 
        r["status"] != "tie" and 
        r["chosen_score"] >= 8 and 
        not r["in_gsm8k_train"]
)

This will reduce the size of the original by 54% while giving you better quality preferences!

What should we build next?



  • 2 replies
·