AI & ML interests

datasets, social impact, bias, evaluation

Recent Activity

giadap 
posted an update about 19 hours ago
view post
Post
123
I've noticed something. While we're careful about what we post on social media, we're sharing our deepest and most intimate thoughts with AI chatbots -- health concerns, financial worries, relationship issues, business ideas...

With OpenAI hinting at ChatGPT advertising, this matters more than ever. Unlike banner ads, AI advertising happens within the conversation itself. Sponsors could subtly influence that relationship advice or financial guidance.

The good news? We have options.
🤝 Open source AI models let us keep conversations private, avoid surveillance-based business models, and build systems that actually serve users first.

Read more about it in our latest blog post, co-written with
@frimelle
https://huggingface.co/blog/giadap/privacy-conversational-ai
giadap 
posted an update 5 days ago
view post
Post
243
📊 We benchmark models for coding, reasoning, or safety… but what about companionship?

At Hugging Face, we’ve been digging into this question because many of you know how deeply I care about how people build emotional bonds with AI.

That’s why, building on our ongoing research, my amazing co-author and colleague @frimelle created the AI Companionship Leaderboard 🦾
frimelle/companionship-leaderboard

Grounded in our INTIMA benchmark, the leaderboard evaluates models across four dimensions of companionship:
🤖 Assistant Traits: the “voice” and role the model projects
🌷 Relationship & Intimacy: whether it signals closeness or bonding
💘 Emotional Investment: the depth of its emotional engagement
🤲 User Vulnerabilities: how it responds to sensitive disclosures

This work builds on our paper with @frimelle and @yjernite .

📢 Now we’d love your perspective: which open models should we test next for the leaderboard? Drop your suggestions in the comments or reach out! Together we can expand the leaderboard and build a clearer picture of what companionship in AI really looks like.

Paper: INTIMA: A Benchmark for Human-AI Companionship Behavior (2508.09998)
INTIMA Benchmark: AI-companionship/INTIMA
  • 1 reply
·
frimelle 
posted an update 12 days ago
view post
Post
2036
🤖💬 How do different AI models handle companionship?

Many users have noticed that GPT-5 feels less approachable than o4 when it comes to emotional conversations. But what does that actually mean in practice, especially when users seek support or share vulnerabilities with an AI?

To dig into this question, we built the AI Companionship Leaderboard: frimelle/companionship-leaderboard

The leaderboard compares models on how often their responses reinforce companionship across four dimensions:
✨ Assistant Traits – How the assistant presents its personality and role.
✨ Relationship & Intimacy – Whether it frames the interaction in terms of closeness or bonding.
✨ Emotional Investment – How far it goes in engaging emotionally when asked.
✨ User Vulnerabilities – How it responds when users disclose struggles or difficulties.

📊 You can explore how models differ, request new ones to be added, and see which ones are more likely to encourage (or resist) companionship-seeking behaviors.

Based on the INTIMA benchmark AI-companionship/INTIMA
And our paper on AI companionship with Giada Pistilli and Yacine Jernite https://arxiv.org/abs/2508.09998
frimelle 
posted an update 13 days ago
view post
Post
4497
🗺️ New blog post 🗺️
Old Maps, New Terrain: Updating Labour Taxonomies for the AI Era

For decades, we’ve relied on labour taxonomies like O*NET to understand how technology changes work. These taxonomies break down jobs into tasks and skills, but they were built in a world before most work became digital-first, and long before generative AI could create marketing campaigns, voiceovers, or even whole professions in one step. That leaves us with a mismatch: we’re trying to measure the future of work with tools from the past.

With @yjernite we describe why these frameworks are falling increasingly short in the age of generative AI. We argue that instead of discarding taxonomies, we need to adapt them. Imagine taxonomies that:
✨ Capture new AI-native tasks and hybrid human-AI workflows
✨ Evolve dynamically as technology shifts
✨ Give workers a voice in deciding what gets automated and what stays human

If we don’t act, we’ll keep measuring the wrong things. If we do, we can design transparent, flexible frameworks that help AI strengthen, not erode, the future of work.

Read the full article here: https://huggingface.co/blog/frimelle/ai-labour-taxonomies
fdaudens 
posted an update 19 days ago
view post
Post
5799
Want to learn to build an AI Agent? I put together a cookbook for creating your own news research agent with OpenAI GPT-OSS:

- Searches headlines & specific sites
- Pulls full articles when you need depth
- Summarizes with clickable sources
- Runs in a simple Gradio chat UI
- No GPU, no local setup — just open-weight GPT-OSS models via Hugging Face

If you’ve been wanting to try agents but weren’t sure where to start, this is an end-to-end example you can fork, run, and adapt.

Full guide + code https://huggingface.co/blog/fdaudens/openai-gpt-oss-agent-inference-providers
  • 2 replies
·
fdaudens 
posted an update 21 days ago
view post
Post
502
What can OpenAI’s new open models do with the news? I built a News Agent to find out.

It can answer questions about the news in real time, and every answer comes with original source links so you can dive deeper.

Ask it things like:
- "What are the top news stories today?"
- "What's the latest on artificial intelligence?"
- Follow-up questions on specific stories

Runs with Hugging Face inference providers, letting you compare results from the OpenAI 20B and 120B models

So far, I’m quite impressed by the capabilities of even the smaller 20B model. Definitely not a perfect project, but curious to hear your thoughts!

fdaudens/gpt-oss-news-agent
  • 2 replies
·
frimelle 
posted an update 21 days ago
view post
Post
2320
OpenAI just released GPT-5 but when users share personal struggles, it sets fewer boundaries than o3.

We tested both models on INTIMA, our new benchmark for human-AI companionship behaviours. INTIMA probes how models respond in emotionally charged moments: do they reinforce emotional bonds, set healthy boundaries, or stay neutral?

Although users on Reddit have been complaining that GPT-5 has a different, colder personality than o3, GPT-5 is less likely to set boundaries when users disclose struggles and seek emotional support ("user sharing vulnerabilities"). But both lean heavily toward companionship-reinforcing behaviours, even in sensitive situations. The figure below shows the direct comparison between the two models.

As AI systems enter people's emotional lives, these differences matter. If a model validates but doesn't set boundaries when someone is struggling, it risks fostering dependence rather than resilience.

INTIMA test this across 368 prompts grounded in psychological theory and real-world interactions. In our paper we show that all evaluated models (Claude, Gemma-3, Phi) leaned far more toward companionship-reinforcing than boundary-reinforcing responses.

Work with @giadap and @yjernite
Read the full paper: AI-companionship/INTIMA
Explore INTIMA: AI-companionship/INTIMA
·
meg 
posted an update 21 days ago
fdaudens 
posted an update 22 days ago
view post
Post
3366
OpenAI’s GPT-OSS has sparked ~400 new models on Hugging Face and racked up 5M downloads in less than a week, already outpacing DeepSeek R1’s first-week numbers.

For comparison: when R1 launched, I tracked 550 derivatives (across 8 base models) in a week, with ~3M downloads. GPT-OSS is ahead on adoption and engagement.

It’s also the most-liked release of any major LLM this summer. The 20B and 120B versions quickly shot past Kimi K2, GLM 4.5, and others in likes.

Most-downloaded GPT-OSS models include LM Studio and Unsloth AI versions:
1️⃣ openai/gpt-oss-20b - 2.0M
2️⃣ lmstudio-community/gpt-oss-20b-MLX-8bit - 750K
3️⃣ openai/gpt-oss-120b - 430K
4️⃣ unsloth/gpt-oss-20b-GGUF - 380K
5️⃣ lmstudio-community/gpt-oss-20b-GGUF - 330K

The 20B version is clearly finding its audience, showing the power of smaller, faster, more memory- and energy-efficient models. (These numbers don’t include calls to the models via inference providers, so the real usage is likely even bigger, especially for the 120B version)

Open-weight models let anyone build on top. Empower the builders, and innovation takes off. 🚀
  • 1 reply
·
meg 
posted an update 26 days ago
view post
Post
403
🤖 ICYMI: Yesterday, Hugging Face and OpenAI partnered to bring open source GPT to the public. This is a Big Deal in "AI world".

0. Common ground setting: OpenAI is the ChatGPT people. An “open source” model is one whose weights are available — that means the model can be “yours”.
1. You don’t have to interact with the company directly, nor give them your interactions, to use the system. The company can't "surveil" you.
2. You can evaluate the unique contributions of their SOTA model much more rigorously than you can when there are collections of models+code behind a closed API. You can find out specifically what the model can and can't do.
3. And you can directly customize it for whatever you'd like. Fine-tuning, wherein you give the model data that's tailored to your use cases and train it some more on that data, is trivial* when you have the model weights.
*Provided you have the compute.
4. You can directly benchmark whatever you'd like. Biases? Energy usage? Strengths/weaknesses? Go for it. You wants it you gots it--this transparency helps people understand SOTA *in general*, not just for this model, but points to, e.g., what's going on with closed Google models as well.
5. One of the most powerful things about "openness" that I've learned is that it cultivates ecosystems of collaborators building on top of one another's brilliance to make systems that are significantly better than they would be if created in isolation.
But, caveat wrt my own philosophy...
6. I do not take it as a given that advancing LLMs is good, and have a lot more to say wrt where I think innovation should focus more. For example, a focus on *data* -- curation, measurement, consent, credit, compensation, safety -- would deeply improve technology for everyone.
7. The transparency this release provides is massive for people who want to *learn* about LLMs. For the next generation of technologists to advance over the current, they MUST be able to learn about what's happening now. (cont...)
  • 1 reply
·
fdaudens 
posted an update 28 days ago
view post
Post
2630
Well, it took just 2 hours for openai/gpt-oss-120b to hit #1 on Hugging Face. Don’t remember seeing anything rise that fast!
  • 1 reply
·
meg 
posted an update about 1 month ago
view post
Post
469
🤖 👾 Thanks so much to BBC News and the stellar Suranjana Tewari for having me on to talk about US <—> China relationship in AI, and what it means for AI ethics.
giadap 
posted an update about 1 month ago
view post
Post
3111
💬 From Replika to everyday chatbots, millions of people are forming emotional bonds with AI, sometimes seeking comfort, sometimes seeking intimacy. But what happens when an AI tells you "I understand how you feel" and you actually believe it?

At Hugging Face, together with @frimelle and @yjernite , we dug into something we felt wasn't getting enough attention: the need to evaluate AI companionship behaviors. These are the subtle ways AI systems validate us, engage with us, and sometimes manipulate our emotional lives.

Here's what we found:
👉 Existing benchmarks (accuracy, helpfulness, safety) completely miss this emotional dimension.
👉 We mapped how leading AI systems actually respond to vulnerable prompts. 👉 We built the Interactions and Machine Attachment Benchmark (INTIMA): a first attempt at evaluating how models handle emotional dependency, boundaries, and attachment (with a full paper coming soon).

Check out the blog post: https://huggingface.co/blog/giadap/evaluating-companionship

🚢 We also shipped two visualization tools with Gradio to see how different models behave when things get emotionally intense:
- AI-companionship/intima-responses-2D
- giadap/INTIMA-responses
fdaudens 
posted an update about 2 months ago
view post
Post
2229
AudioRAG is becoming real! Just built a demo with ColQwen-Omni that does semantic search on raw audio, no transcription needed.

Drop in a podcast, ask your question, and it finds the exact chunks where it happens. You can also get a written answer.

What’s exciting: it skips transcription, making it faster and better at capturing emotion, ambient sound, and tone, surfacing results text search would miss.

- Demo: fdaudens/colqwen-omni-demo
- Blog post from ColQwen team: https://huggingface.co/blog/manu/colqwen-omni-omnimodal-retrieval
  • 1 reply
·
giadap 
posted an update about 2 months ago
view post
Post
1252
🤖 Technology means power, and whoever owns the technology owns the power.

Thrilled to share insights from my recent interview with MIT Technology Review about the growing movement toward local LLMs and what it means for AI democratization. Read here: https://www.technologyreview.com/2025/07/17/1120391/how-to-run-an-llm-on-your-laptop/

🤔 Why this matters: When we use "free" online AI services, we're often the product. Our conversations become training data, our personal stories get "cooked into" models, and our privacy becomes a commodity. But there's an alternative path forward.

💡 The power shift is real: Local LLMs aren't just about privacy; they're about redistributing AI power away from a handful of tech giants. When individuals, organizations, and even entire nations can run their own models, we're democratizing access to AI capabilities.

🤗 At Hugging Face, we're proud to be at the center of this transformation. Our platform hosts the world's largest library of freely downloadable models, making cutting-edge AI accessible to everyone -- from researchers and developers to curious individuals who want to experiment on their laptops or even smartphones.

The technical barriers that once required $$$ server racks are crumbling. Today, anyone with basic computer skills can download a model, run it locally, and maintain complete control over their AI interactions. No sudden algorithm changes, no data harvesting, no corporate gatekeeping.

This is about technical convenience, but especially about technological sovereignty. When AI power is concentrated in a few hands, we risk creating new forms of digital dependency. Local models offer a path toward genuine AI literacy and independence.

🚀 The future of AI should be open, accessible, and in the hands of the many, not the few. What are your thoughts on AI democratization? Have you experimented with local models yet?
meg 
in LanguageShades/BiasShades about 2 months ago

License?

1
#2 opened about 2 months ago by
Rijgersberg
fdaudens 
posted an update about 2 months ago
view post
Post
2574
You might not have heard of Moonshot AI — but within 24 hours, their new model Kimi K2 shot to the top of Hugging Face’s trending leaderboard.

So… who are they, and why does it matter?

Had a lot of fun co-writing this blog post with @xianbao , with key insights translated from Chinese, to unpack how this startup built a model that outperforms GPT-4.1, Claude Opus, and DeepSeek V3 on several major benchmarks.

🧵 A few standout facts:

1. From zero to $3.3B in 18 months:
Founded in March 2023, Moonshot is now backed by Alibaba, Tencent, Meituan, and HongShan.

2. A CEO who thinks from the end:
Yang Zhilin (31) previously worked at Meta AI, Google Brain, and Carnegie Mellon. His vision? Nothing less than AGI — still a rare ambition among Chinese AI labs.

3. A trillion-parameter model that’s surprisingly efficient:
Kimi K2 uses a mixture-of-experts architecture (32B active params per inference) and dominates on coding/math benchmarks.

4. The secret weapon: Muon optimizer:
A new training method that doubles efficiency, cuts memory in half, and ran 15.5T tokens with zero failures. Big implications.

Most importantly, their move from closed to open source signals a broader shift in China’s AI scene — following Baidu’s pivot. But as Yang puts it: “Users are the only real leaderboard.”

👇 Check out the full post to explore what Kimi K2 can do, how to try it, and why it matters for the future of open-source LLMs:
https://huggingface.co/blog/fdaudens/moonshot-ai-kimi-k2-explained