Hugging Face Party @ PyTorch Conference

community

AI & ML interests

None defined yet.

Recent Activity

HF-Party's activity

m-ric 
posted an update 3 days ago
view post
Post
2825
𝗧𝗵𝗲 𝗛𝘂𝗯 𝘄𝗲𝗹𝗰𝗼𝗺𝗲𝘀 𝗲𝘅𝘁𝗲𝗿𝗻𝗮𝗹 𝗶𝗻𝗳𝗲𝗿𝗲𝗻𝗰𝗲 𝗽𝗿𝗼𝘃𝗶𝗱𝗲𝗿𝘀!

✅ Hosting our own inference was not enough: now the Hub 4 new inference providers: fal, Replicate, SambaNova Systems, & Together AI.

Check model cards on the Hub: you can now, in 1 click, use inference from various providers (cf video demo)

Their inference can also be used through our Inference API client. There, you can use either your custom provider key, or your HF token, then billing will be handled directly on your HF account, as a way to centralize all expenses.

💸 Also, PRO users get 2$ inference credits per month!

Read more in the announcement 👉 https://huggingface.co/blog/inference-providers
  • 1 reply
·
clem 
posted an update 4 days ago
view post
Post
6661
AI is not a zero-sum game. Open-source AI is the tide that lifts all boats!
clem 
posted an update 6 days ago
m-ric 
posted an update 6 days ago
view post
Post
2446
Today we make the biggest release in smolagents so far: 𝘄𝗲 𝗲𝗻𝗮𝗯𝗹𝗲 𝘃𝗶𝘀𝗶𝗼𝗻 𝗺𝗼𝗱𝗲𝗹𝘀, 𝘄𝗵𝗶𝗰𝗵 𝗮𝗹𝗹𝗼𝘄𝘀 𝘁𝗼 𝗯𝘂𝗶𝗹𝗱 𝗽𝗼𝘄𝗲𝗿𝗳𝘂𝗹 𝘄𝗲𝗯 𝗯𝗿𝗼𝘄𝘀𝗶𝗻𝗴 𝗮𝗴𝗲𝗻𝘁𝘀! 🥳

Our agents can now casually open up a web browser, and navigate on it by scrolling, clicking elements on the webpage, going back, just like a user would.

The demo below shows Claude-3.5-Sonnet browsing GitHub for task: "Find how many commits the author of the current top trending repo did over last year."
Hi @mlabonne !

Go try it out, it's the most cracked agentic stuff I've seen in a while 🤯 (well, along with OpenAI's Operator who beat us by one day)

For more detail, read our announcement blog 👉 https://huggingface.co/blog/smolagents-can-see
The code for the web browser example is here 👉 https://github.com/huggingface/smolagents/blob/main/examples/vlm_web_browser.py
·
JingzeShi 
posted an update 10 days ago
JingzeShi 
posted an update 11 days ago
florentgbelidji 
posted an update 13 days ago
view post
Post
1404
𝗣𝗹𝗮𝗻𝗻𝗶𝗻𝗴 𝗬𝗼𝘂𝗿 𝗡𝗲𝘅𝘁 𝗦𝗸𝗶 𝗔𝗱𝘃𝗲𝗻𝘁𝘂𝗿𝗲 𝗝𝘂𝘀𝘁 𝗚𝗼𝘁 𝗦𝗺𝗮𝗿𝘁𝗲𝗿: 𝗜𝗻𝘁𝗿𝗼𝗱𝘂𝗰𝗶𝗻𝗴 𝗔𝗹𝗽𝗶𝗻𝗲 𝗔𝗴𝗲𝗻𝘁!🏔️⛷️

With the big hype around AI agents these days, I couldn’t stop thinking about how AI agents could truly enhance real-world activities.
What sort of applications could we build with those AI agents: agentic RAG? self-correcting text-to-sql? Nah, boring…

Passionate about outdoors, I’ve always dreamed of a tool that could simplify planning mountain trips while accounting for all potential risks. That’s why I built 𝗔𝗹𝗽𝗶𝗻𝗲 𝗔𝗴𝗲𝗻𝘁, a smart assistant designed to help you plan safe and enjoyable itineraries in the French Alps and Pyrenees.

Built using Hugging Face's 𝘀𝗺𝗼𝗹𝗮𝗴𝗲𝗻𝘁𝘀 library, Alpine Agent combines the power of AI with trusted resources like 𝘚𝘬𝘪𝘵𝘰𝘶𝘳.𝘧𝘳 (https://skitour.fr/) and METEO FRANCE. Whether it’s suggesting a route with moderate difficulty or analyzing avalanche risks and weather conditions, this agent dynamically integrates data to deliver personalized recommendations.

In my latest blog post, I share how I developed this project—from defining tools and integrating APIs to selecting the best LLMs like 𝘘𝘸𝘦𝘯2.5-𝘊𝘰𝘥𝘦𝘳-32𝘉-𝘐𝘯𝘴𝘵𝘳𝘶𝘤𝘵, 𝘓𝘭𝘢𝘮𝘢-3.3-70𝘉-𝘐𝘯𝘴𝘵𝘳𝘶𝘤𝘵, or 𝘎𝘗𝘛-4.

⛷️ Curious how AI can enhance adventure planning?
Try the app and share your thoughts: florentgbelidji/alpine-agent

👉 Want to build your own agents? Whether for cooking, sports training, or other passions, the possibilities are endless. Check out the blog post to learn more: https://huggingface.co/blog/florentgbelidji/alpine-agent

Many thanks to @m-ric for helping on building this tool with smolagents!
  • 1 reply
·
m-ric 
posted an update 15 days ago
view post
Post
1195
𝗠𝗶𝗻𝗶𝗠𝗮𝘅'𝘀 𝗻𝗲𝘄 𝗠𝗼𝗘 𝗟𝗟𝗠 𝗿𝗲𝗮𝗰𝗵𝗲𝘀 𝗖𝗹𝗮𝘂𝗱𝗲-𝗦𝗼𝗻𝗻𝗲𝘁 𝗹𝗲𝘃𝗲𝗹 𝘄𝗶𝘁𝗵 𝟰𝗠 𝘁𝗼𝗸𝗲𝗻𝘀 𝗰𝗼𝗻𝘁𝗲𝘅𝘁 𝗹𝗲𝗻𝗴𝘁𝗵 💥

This work from Chinese startup @MiniMax-AI introduces a novel architecture that achieves state-of-the-art performance while handling context windows up to 4 million tokens - roughly 20x longer than current models. The key was combining lightning attention, mixture of experts (MoE), and a careful hybrid approach.

𝗞𝗲𝘆 𝗶𝗻𝘀𝗶𝗴𝗵𝘁𝘀:

🏗️ MoE with novel hybrid attention:
‣ Mixture of Experts with 456B total parameters (45.9B activated per token)
‣ Combines Lightning attention (linear complexity) for most layers and traditional softmax attention every 8 layers

🏆 Outperforms leading models across benchmarks while offering vastly longer context:
‣ Competitive with GPT-4/Claude-3.5-Sonnet on most tasks
‣ Can efficiently handle 4M token contexts (vs 256K for most other LLMs)

🔬 Technical innovations enable efficient scaling:
‣ Novel expert parallel and tensor parallel strategies cut communication overhead in half
‣ Improved linear attention sequence parallelism, multi-level padding and other optimizations achieve 75% GPU utilization (that's really high, generally utilization is around 50%)

🎯 Thorough training strategy:
‣ Careful data curation and quality control by using a smaller preliminary version of their LLM as a judge!

Overall, not only is the model impressive, but the technical paper is also really interesting! 📝
It has lots of insights including a great comparison showing how a 2B MoE (24B total) far outperforms a 7B model for the same amount of FLOPs.

Read it in full here 👉 MiniMax-01: Scaling Foundation Models with Lightning Attention (2501.08313)
Model here, allows commercial use <100M monthly users 👉 MiniMaxAI/MiniMax-Text-01
m-ric 
posted an update 15 days ago
view post
Post
2437
𝗪𝗲'𝘃𝗲 𝗷𝘂𝘀𝘁 𝗿𝗲𝗹𝗲𝗮𝘀𝗲𝗱 𝘀𝗺𝗼𝗹𝗮𝗴𝗲𝗻𝘁𝘀 𝘃𝟭.𝟯.𝟬 🚀, and it comes with a major feature: you can now log agent runs using OpenTelemetry to inspect them afterwards! 📊

This interactive format is IMO much easier to inspect big multi-step runs than endless console logs.

The setup is very easy, in a few lines of code.

Find a tutorial here 👉 https://huggingface.co/docs/smolagents/tutorials/inspect_runs
  • 5 replies
·
m-ric 
posted an update 19 days ago
view post
Post
624
𝗢𝗦-𝗚𝗲𝗻𝗲𝘀𝗶𝘀: 𝗻𝗲𝘄 𝗿𝗲𝘀𝗲𝗮𝗿𝗰𝗵 𝗽𝗮𝗽𝗲𝗿 𝗽𝗿𝗼𝗽𝗼𝘀𝗲𝘀 𝗮 𝗻𝗼𝘃𝗲𝗹 𝘁𝗿𝗮𝗶𝗻𝗶𝗻𝗴 𝗱𝗮𝘁𝗮 𝗴𝗲𝗻𝗲𝗿𝗮𝘁𝗶𝗼𝗻 𝗺𝗲𝘁𝗵𝗼𝗱 𝗳𝗼𝗿 𝗖𝗹𝗮𝘂𝗱𝗲-𝗖𝗼𝗺𝗽𝘂𝘁𝗲𝗿-𝗨𝘀𝗲-𝗹𝗶𝗸𝗲 𝗮𝗴𝗲𝗻𝘁𝘀, 𝘄𝗶𝘁𝗵 𝗶𝗺𝗽𝗿𝗲𝘀𝘀𝗶𝘃𝗲 𝗿𝗲𝘀𝘂𝗹𝘁𝘀! 🔥

The main bottleneck in building GUI agents it to find training data.
GUI Agent trajectories are not easy to get by. Crowdsourcing trajectories, then manually annotating them, could be an option, but at scale, it's hard to do

You could use synthetic data generation (ask 1000s small existing GUI agents to solve tasks, keep only successful runs). But then it's hard to come up with many high level-tasks.

➡️ Well, a novel technique was just published that creates a new promising paradigm for synthetic data generation: Shanghai AI Lab researchers propose OS-Genesis, a novel way to create training data for GUI agents that flips the traditional approach on its head. Instead of starting with predefined tasks and having humans or machines execute them, OS-Genesis first explores the interface naturally, then derives meaningful tasks from those interactions.

🔍 Exploration-driven vs task-driven approach:
‣ Instead of starting with tasks, OS-Genesis first explores GUIs by clicking and interacting
‣ It then reverse-engineers high-level tasks from successful interaction patterns
‣ This leads to more natural and diverse training data than predefined tasks

🎯 Novel reward model for trajectory quality:
‣ Rather than discarding incomplete trajectories, OS-Genesis scores them based on coherence and completion
‣ This preserves valuable partial successes that would otherwise be wasted

🏆 Superior results across environments:
‣ Nearly doubles performance on AndroidWorld (9.8% → 17.4%)

By the way, this field of GUI agents is still in infancy, so you can still make a difference with "low-cost" setups: their paper gets SOTA results with only 8xA100!

Read the paper here 👉 OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis (2412.19723)
m-ric 
posted an update 24 days ago
view post
Post
5068
Since I published it on GitHub a few days ago,
Hugging Face's new agentic library 𝘀𝗺𝗼𝗹𝗮𝗴𝗲𝗻𝘁𝘀 has gathered nearly 4k stars 🤯

➡️ But we are just getting started on agents: so we are hiring an ML Engineer to join me and double down on this effort!

The plan is to build GUI agents: agents that can act on your computer with mouse & keyboard, like Claude Computer Use.

We will make it work better, and fully open. ✨

Sounds like something you'd like to do? Apply here 👉 https://apply.workable.com/huggingface/j/AF1D4E3FEB/
·
jeffboudier 
posted an update 24 days ago
view post
Post
571
NVIDIA just announced the Cosmos World Foundation Models, available on the Hub: nvidia/cosmos-6751e884dc10e013a0a0d8e6

Cosmos is a family of pre-trained models purpose-built for generating physics-aware videos and world states to advance physical AI development.
The release includes Tokenizers nvidia/cosmos-tokenizer-672b93023add81b66a8ff8e6

Learn more in this great community article by @mingyuliutw and @PranjaliJoshi https://huggingface.co/blog/mingyuliutw/nvidia-cosmos
  • 1 reply
·